Low-dose memantine-induced working memory improvement in the allothetic place avoidance alternation task (APAAT) in young adult male rats
Frontiers Media SA -- Frontiers in Behavioral Neuroscience
DOI 10.3389/fnbeh.2013.00203
Keyword(s)
  1. working memory
  2. cognitive skill learning
  3. locomotor activity
  4. MK-801
  5. memantine
  6. Allothetic Place Avoidance Alternation Task (APAAT)
Abstract(s)

N-methyl-D-aspartate receptors (NMDAR) are involved in neuronal plasticity. To assess their role simultaneously in spatial working memory and non-cognitive learning, we used NMDAR antagonists and the Allothetic Place Avoidance Alternation Task (APAAT). In this test rats should avoid entering a place where shocks were presented on a rotating arena which requires cognitive coordination for the segregation of stimuli. The experiment took place 30 min after intraperitoneal injection of memantine (5, 10, 20 mg/kg b.w.: MemL, MemM, MemH, respectively) and (+)MK-801 (0.1, 0.2, 0.3 mg/kg b.w.: MK-801L, MK-801M, MK-801H, respectively). Rats from the control group were intact or injected with saline (0.2 ml/kg). Over three consecutive days the rats underwent habituation, two avoidance training intervals with shocks, and a retrieval test. The shock sector was alternated daily. The after-effects of the agents were tested on Day 21. Rats treated with low dose memantine presented a longer maximum time avoided and fewer entrances than the MemH, MK-801M, MK-801H and Control rats. The shocks per entrances ratio, used as an index of cognitive skill learning, showed skill improvement after D1, except for rats treated by high doses of the agents. The activity levels, indicated by the distance walked, were higher for the groups treated with high doses of the agents. On D21 the MK801H rats performed the memory task better than the MemH rats, whereas the rats' activity depended on condition, not on the group factor. These results suggest that in naïve rats mild NMDAR blockade by low-dose memantine improves working memory related to a highly challenging task.