Variation in spatial and temporal incidence of the crustacean pathogen Hematodinium perezi in environmental samples from Atlantic Coastal Bays
Springer Science and Business Media LLC -- Aquatic Biosystems
DOI 10.1186/2046-9063-9-11
Keyword(s)
  1. Blue crab
  2. Hematodinium
  3. Parasite
  4. Disease reservoir
  5. Fishery
Abstract(s)

Background

Hematodinium perezi, a parasitic dinoflagellate, infects and kills blue crabs, Callinectes sapidus, along the Atlantic and Gulf coasts of the United States. The parasite proliferates within host hemolymph and tissues, and also produces free-swimming biflagellated dinospores that emerge from infected crabs. Infections in C. sapidus recur annually, and it is not known if biotic or environmental reservoirs contribute to reinfection and outbreaks. To address this data gap, a quantitative PCR assay based on the internal transcribed spacer 2 (ITS2) region of H. perezi rRNA genes was developed to asses the temporal and spatial incidence of the parasite in Delaware and Maryland coastal bays.

Results

A previously-used PCR assay for H. perezi, based on the small subunit rRNA gene sequence, was found to lack adequate species specificity to discriminate non-Hematodinium sp. dinoflagellate species in environmental samples. A new ITS2-targeted assay was developed and validated to detect H. perezi DNA in sediment and water samples using E. coli carrying the H. perezi rDNA genes. Application of the method to environmental samples identified potential hotspots in sediment in Indian River Inlet, DE and Chincoteague Bay, MD and VA. H. perezi DNA was not detected in co-occurring shrimp or snails, even during an outbreak of the parasite in C. sapidus.

Conclusions

H. perezi is present in water and sediment samples in Maryland and Delaware coastal bays from April through November with a wide spatial and temporal variability in incidence. Sampling sites with high levels of H. perezi DNA in both bays share characteristics of silty, organic sediments and low tidal currents. The environmental detection of H. perezi in spring, ahead of peak prevalence in crabs, points to gaps in our understanding of the parasite’s life history prior to infection in crabs as well as the mode of environmental transmission. To better understand the H. perezi life cycle will require further monitoring of the parasite in habitats as well as hosts. Improved understanding of potential environmental transmission to crabs will facilitate the development of disease forecasting.