Characterization of a Maize Wip1 Promoter in Transgenic Plants
MDPI AG -- International Journal of Molecular Sciences
DOI 10.3390/ijms141223872
  1. Wip1
  2. promoter
  3. transcriptional start site
  4. transgenic plant

The Maize Wip1 gene encodes a wound-induced Bowman-Birk inhibitor (BBI) protein which is a type of serine protease inhibitor, and its expression is induced by wounding or infection, conferring resistance against pathogens and pests. In this study, the maize Wip1 promoter was isolated and its function was analyzed. Different truncated Wip1 promoters were fused upstream of the GUS reporter gene and transformed into Arabidopsis, tobacco and rice plants. We found that (1) several truncated maize Wip1 promoters led to strong GUS activities in both transgenic Arabidopsis and tobacco leaves, whereas low GUS activity was detected in transgenic rice leaves; (2) the Wip1 promoter was not wound-induced in transgenic tobacco leaves, but was induced by wounding in transgenic rice leaves; (3) the truncated Wip1 promoter had different activity in different organs of transgenic tobacco plants; (4) the transgenic plant leaves containing different truncated Wip1 promoters had low GUS transcripts, even though high GUS protein level and GUS activities were observed; (5) there was one transcription start site of Wip1 gene in maize and two transcription start sites of GUS in Wip1::GUS transgenic lines; (6) the adjacent 35S promoter which is present in the transformation vectors enhanced the activity of the truncated Wip1 promoters in transgenic tobacco leaves, but did not influence the disability of truncated Wip1231 promoter to respond to wounding signals. We speculate that an ACAAAA hexamer, several CAA trimers and several elements similar to ACAATTAC octamer in the 5′-untranslated region might contribute to the strong GUS activity in Wip1231 transgenic lines, meanwhile, compared to the 5′-untranslated region from Wip1231 transgenic lines, the additional upstream open reading frames (uORFs) in the 5′-untranslated region from Wip1737 transgenic lines might contribute to the lower level of GUS transcript and GUS activity.