ZMYND10 stabilizes intermediate chain proteins in the cytoplasmic pre-assembly of dynein arms
Public Library of Science (PLoS) -- PLOS Genetics
DOI 10.1371/journal.pgen.1007316

Zinc finger MYND-type-containing 10 (ZMYND10), a cytoplasmic protein expressed in ciliated cells, causes primary ciliary dyskinesia (PCD) when mutated; however, its function is poorly understood. Therefore, in this study, we examined the roles of ZMYND10 using Zmynd10–/–mice exhibiting typical PCD phenotypes, including hydrocephalus and laterality defects. In these mutants, morphology, the number of motile cilia, and the 9+2 axoneme structure were normal; however, inner and outer dynein arms (IDA and ODA, respectively) were absent. ZMYND10 interacted with ODA components and proteins, including LRRC6, DYX1C1, and C21ORF59, implicated in the cytoplasmic pre-assembly of DAs, whose levels were significantly reduced in Zmynd10–/–mice. LRRC6 and DNAI1 were more stable when co-expressed with ZYMND10 than when expressed alone. DNAI2, which did not interact with ZMYND10, was not stabilized by co-expression with ZMYND10 alone, but was stabilized by co-expression with DNAI1 and ZMYND10, suggesting that ZMYND10 stabilized DNAI1, which subsequently stabilized DNAI2. Together, these results demonstrated that ZMYND10 regulated the early stage of DA cytoplasmic pre-assembly by stabilizing DNAI1.