Sevoflurane Stimulates MAP Kinase Signal transduction through the Activation of PKC α and βII in Fetal Rat Cerebral Cortex Cultured Neuron
Japan Society of Histochemistry & Cytochemistry -- ACTA HISTOCHEMICA ET CYTOCHEMICA
DOI 10.1267/ahc.06022
Keyword(s)
  1. sevoflurane
  2. protein kinase C (PKC)
  3. mitogen-activated protein (MAP)
  4. MAP kinase
  5. neuron
Abstract(s)

Protein kinase C (PKC) is a key enzyme that participates in various neuronal functions. PKC has also been identified as a target molecule for general anesthetic actions. Raf, mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK1/2) have been thought to be target effectors of PKC. In the present study, we attempted to evaluate the effect of sevoflurane on PKC/MAPK cascade signaling in cultured fetal rat cerebral ­cortex neurons, prepared from embryonic day 18 fetuses. The effects of sevoflurane on the translocation of 7 PKC isoforms (α, βI, βII, γ, δ, ɛ and ζ) were observed by immunoblotting using isoform-selective antibodies to PKCs. The treatment of neurons with sevoflurane induced the translocation of PKC α and PKC βII species from the cytosol to the membrane fraction, which indicated the activation of these PKC isoforms. In contrast, there was no clear change in the distribution of other PKC isoforms. We next examined whether the specific activation of PKC α and βII by sevoflurane could stimulate the MAP kinase signaling pathway in cultured neurons. Raf phosphorylation was increased by the administration of 0.25 mM sevoflurane. The phosphorylation of Raf proteins reached a maximum at 5–10 min. Subsequently, the phosphorylation of MEK proteins was increased at 10–15 min after sevoflurane treatments. That of ERK proteins was induced at 15–60 min. Moreover, the phosphorylation of ERK induced by sevoflurane was significantly decreased by the treatment of PKC inhibitor (staurosporine) and MEK inhibitor (PD98059). On the other hand, the contents of total Raf, MEK and ERK proteins were relatively constant at all times examined. To examine the ­localization of phosphorylated-ERK protein, immunohistochemical staining of sevoflurane-treated cultured neurons was performed. The phosphorylated-ERK proteins were markedly accumulated in both the cytosol of the cell body and the neurites in the neuronal cells with time after 0.25 mM sevoflurane-treatment. These results demonstrated that sevoflurane induced the phosphorylation of the MAP kinase cascade through the activation of the PKC α and PKC βII species.