2-Methoxystypandrone inhibits signal transducer and activator of transcription 3 and nuclear factor-κB signaling by inhibiting Janus kinase 2 and IκB kinase
Wiley -- Cancer Science
DOI 10.1111/cas.12359
  1. 2-Methoxystypandrone
  2. anticancer drug
  3. Janus kinase 2/signal transducer and activator of transcription 3 pathway
  4. natural compound
  5. tumor necrosis factor-α/nuclear factor-κB pathway

Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) or the nuclear factor-κB (NF-κB) pathway occurs frequently in cancer cells and contributes to oncogenesis. The activation of Janus kinase 2 (JAK2) and IκB kinase (IKK) are key events in STAT3 and NF-κB signaling, respectively. We have identified 2-methoxystypandrone (2-MS) from a traditional Chinese medicinal herb Polygonum cuspidatum as a novel dual inhibitor of JAK2 and IKK. 2-MS inhibits both interleukin-6-induced and constitutively-activated STAT3, as well as tumor necrosis factor-α-induced NF-κB activation. 2-MS specifically inhibits JAK and IKKβ kinase activities but has little effect on activities of other kinases tested. The inhibitory effects of 2-MS on STAT3 and NF-κB signaling can be eliminated by DTT or glutathione and can last for 4 h after a pulse treatment. Furthermore, 2-MS inhibits growth and induces death of tumor cells, particularly those with constitutively-activated STAT3 or NF-κB signaling. We propose that the natural compound 2-MS, as a potent dual inhibitor of STAT3 and NF-κB pathways, is a promising anticancer drug candidate.