NF-κB p65 and p105 implicate in interleukin 1β-mediated COX-2 expression in melanoma cells
Public Library of Science (PLoS) -- PLOS ONE
DOI 10.1371/journal.pone.0208955

Inflammatory and microenvironmental factors produced by cancer cells are thought to directly or indirectly promote cancer cell growth. Prostaglandins, including prostaglandin E2, have key roles as a microenvironment factor in influencing the development of tumors, and are produced by the rate limiting enzyme cyclooxygenase 2 (COX-2). In this study, we used canine melanoma cells treated with the proinflammatory cytokine interleukin 1β (IL-1β) and investigated the transcriptional factor nuclear factor-κB (NF-κB) signaling in IL-1β-induced COX-2 expression. IL-1β induced prostaglandin E2 release and COX-2 mRNA expression in a time- and dose-dependent manner. In the cells treated with the NF-κB inhibitors BAY11-7082 and TPC-1, IL-1β-mediated prostaglandin E2 release and COX-2 mRNA expression were inhibited. IL-1β also provoked phosphorylation of p65/RelA and p105/NF-κB1, which are members of the NF-κB families. The IL-1β-induced phosphorylation of p65 and p105 was attenuated in the presence of both NF-κB inhibitors. In melanoma cells transfected with siRNA of p65 or p105, IL-1β-mediated COX-2 mRNA expression was inhibited. These findings suggest that canonical activation of NF-κB signaling plays a crucial role for inflammatory states in melanoma cells.