ResearchPad - 1006 https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Characterisation of buried blast loading]]> https://www.researchpad.co/article/N97187253-6563-4419-ae0b-a85e0d7feacc While it is well known that detonation of shallow-buried high explosive charges generally results in above-surface loading which is greatly amplified compared with the same detonation in air, uncertainty persists as to the mechanisms leading to this effect. The work presented in this paper is a systematic investigation into the mechanisms of load transfer in buried blast events. This paper details the results from a parametric study into the mechanisms and magnitudes of load transfer following a shallow-buried explosion, where spatial and temporal load distributions are directly measured on a rigid surface using an array of Hopkinson pressure bars. In particular, the investigation has looked at the influence of both geometrical confinement and geotechnical conditions on the loading. The parametric study was separated into four main threads: the influence of physical confinement; gravimetric moisture content; stand-off distance and depth of burial; and soil material/particle size distribution. This study allows a direct observation of the contributions of each of these distinct parameters, and in particular the ability to discern how each parameter influences the temporal form and spatial distribution of the loading.

]]>
<![CDATA[Microstructure-sensitive critical plastic strain energy density criterion for fatigue life prediction across various loading regimes]]> https://www.researchpad.co/article/Nec259dea-eba2-4023-a087-8d1097f40458 In the present work, we postulate that a critical value of the stored plastic strain energy density (SPSED) is associated with fatigue failure in metals and is independent of the applied load. Unlike the classical approach of estimating the (homogenized) SPSED as the cumulative area enclosed within the macroscopic stress–strain hysteresis loops, we use crystal plasticity finite element simulations to compute the (local) SPSED at each material point within polycrystalline aggregates of a nickel-based superalloy. A Bayesian inference method is used to calibrate the critical SPSED, which is subsequently used to predict fatigue lives at nine different strain ranges, including strain ratios of 0.05 and −1, using nine statistically equivalent microstructures. For each strain range, the predicted lives from all simulated microstructures follow a lognormal distribution. Moreover, for a given strain ratio, the predicted scatter is seen to be increasing with decreasing strain amplitude; this is indicative of the scatter observed in the fatigue experiments. Finally, the lognormal mean lives at each strain range are in good agreement with the experimental evidence. Since the critical SPSED captures the experimental data with reasonable accuracy across various loading regimes, it is hypothesized to be a material property and sufficient to predict the fatigue life.

]]>
<![CDATA[Characterizing the limits of human stability during motion: perturbative experiment validates a model-based approach for the Sit-to-Stand task]]> https://www.researchpad.co/article/N5a996293-1b8c-469c-9f6a-d493f7ebf040

Falls affect a growing number of the population each year. Clinical methods to assess fall risk usually evaluate the performance of specific motions such as balancing or Sit-to-Stand. Unfortunately, these techniques have been shown to have poor predictive power, and are unable to identify the portions of motion that are most unstable. To this end, it may be useful to identify the set of body configurations that can accomplish a task under a specified control strategy. The resulting strategy-specific boundary between stable and unstable motion could be used to identify individuals at risk of falling. The recently proposed Stability Basin is defined as the set of configurations through time that do not lead to failure for an individual under their chosen control strategy. This paper presents a novel method to compute the Stability Basin and the first experimental validation of the Stability Basin with a perturbative Sit-to-Stand experiment involving forwards or backwards pulls from a motor-driven cable with 11 subjects. The individually-constructed Stability Basins are used to identify when a trial fails, i.e. when an individual must switch from their chosen control strategy (indicated by a step or sit) to recover from a perturbation. The constructed Stability Basins correctly predict the outcome of trials where failure was observed with over 90% accuracy, and correctly predict the outcome of successful trials with over 95% accuracy. The Stability Basin was compared to three other methods and was found to estimate the stable region with over 45% more accuracy in all cases. This study demonstrates that Stability Basins offer a novel model-based approach for quantifying stability during motion, which could be used in physical therapy for individuals at risk of falling.

]]>
<![CDATA[Quasi-Herglotz functions and convex optimization]]> https://www.researchpad.co/article/Nf93cfa79-431d-45b1-bce6-01ec489aef85

We introduce the set of quasi-Herglotz functions and demonstrate that it has properties useful in the modelling of non-passive systems. The linear space of quasi-Herglotz functions constitutes a natural extension of the convex cone of Herglotz functions. It consists of differences of Herglotz functions and we show that several of the important properties and modelling perspectives are inherited by the new set of quasi-Herglotz functions. In particular, this applies to their integral representations, the associated integral identities or sum rules (with adequate additional assumptions), their boundary values on the real axis and the associated approximation theory. Numerical examples are included to demonstrate the modelling of a non-passive gain medium formulated as a convex optimization problem, where the generating measure is modelled by using a finite expansion of B-splines and point masses.

]]>
<![CDATA[The variation of grain size distribution in rock granular material in seepage process considering the mechanical–hydrological–chemical coupling effect: an experimental research]]> https://www.researchpad.co/article/N0e6c100f-bf56-4e0a-b780-cbe5890eac9b

As a common solid waste in geotechnical engineering, rock granular material should be properly treated and recycled. Rock granular material often coexists with water when it is used as the filling material in geotechnical engineering. Water flowing in rock granular materials is a complex progress with the mechanical–hydrological–chemical (MHC) coupling effect, i.e. the water scours in the gaps and spaces in the rock granular material structure, produces chemical reactions with rock grains, rock grains squeeze each other under the water pressure and compression leading to re-breakage and producing secondary rock grains, and the fine rock grains are migrated with water and rushed out. In this process, rock grain size distribution (GSD) changes, it affects the physical and mechanical characteristics of the rock granular materials, and even influences the seepage stability of the rock granular materials. To study the variation of GSD in the rock granular material considering the MHC coupling effect after the seepage process, seepage experiments of rock grain samples are carried out and analysed in this paper. The result is expected to have a positive impact on further studies of the properties of the rock granular material.

]]>
<![CDATA[The effect of bed roughness uncertainty on tidal stream power estimates for the Pentland Firth]]> https://www.researchpad.co/article/N3195ed73-27b2-4c91-a01b-23504b30da32

Uncertainty affects estimates of the power potential of tidal currents, resulting in large ranges in values reported for sites such as the Pentland Firth, UK. Kreitmair et al. (2019, R. Soc. open sci. 6, 180941. (doi:10.1098/rsos.191127)) have examined the effect of uncertainty in bottom friction on tidal power estimates by considering idealized theoretical models. The present paper considers the role of bottom friction uncertainty in a realistic numerical model of the Pentland Firth spanned by different fence configurations. We find that uncertainty in removable power estimates resulting from bed roughness uncertainty depends on the case considered, with relative uncertainty between 2% (for a fully spanned channel with small values of mean roughness and input uncertainty) and 44% (for an asymmetrically confined channel with high values of bed roughness and input uncertainty). Relative uncertainty in power estimates is generally smaller than (input) relative uncertainty in bottom friction by a factor of between 0.2 and 0.7, except for low turbine deployments and very high mean values of friction. This paper makes a start at quantifying uncertainty in tidal stream power estimates, and motivates further work for proper characterization of the resource, accounting for uncertainty inherent in resource modelling.

]]>
<![CDATA[Numerical simulation on fracturing behaviour of hard roofs at different levels during extra-thick coal seam mining]]> https://www.researchpad.co/article/Ne92c3a34-1cb3-4f23-8cfb-ad34b0c9e040

In fully mechanized caving mining of extra-thick coal seams, the movement range of overburden is wide, resulting in the breakage of multilayer hard roofs in overlying large spaces. However, the characteristics, morphology and impact effect of hard roofs at different levels are different and unclear. In this study, a secondary development was used in the numerical simulation software ABAQUS, and the caving of rock strata in the finite-element software was realized. The bearing stress distribution, fracturing morphology and impact energy characteristics of hard roofs at different levels were studied to reflect the action and difference of hard roof failure on the working face; thus, revealing the mechanism of the strong ground pressure in stopes, and providing a theoretical basis for the safe and efficient mining of extra-thick coal seams with hard roofs.

]]>
<![CDATA[Preparation and characterization of waterborne alkyd-amino baking coatings based on waste polyethylene terephthalate]]> https://www.researchpad.co/article/Nc5593182-acdc-4e08-9fb5-0eb4adba91ae

The recycling of polyethylene terephthalate (PET) is the most attractive method for PET waste management because it not only decreases the load on landfill space, but also provides opportunities for reducing the use of raw petrochemical products. Therefore, in this investigation, neopentyl glycol is used for alcoholysis of waste PET, and glycolyzed PET product was applied for preparation of the waterborne alkyd resin. Furthermore, the waterborne alkyd-amino baking coatings were prepared from the waterborne alkyd based on glycolyzed waste PET and melamine formaldehyde resin and applied on tinplate. The waterborne alkyd-amino resin films showed excellent adhesion, balanced hardness and flexibility, high gloss and outstanding chemical resistance except for alkali resistance owing to hydrolysis of ester bonds.

]]>
<![CDATA[Optimization and blends study of heterogeneous acid catalyst-assisted esterification of palm oil industry by-product for biodiesel production]]> https://www.researchpad.co/article/N9dc8a235-e61b-4b8a-90c4-6933b05b90b1

The optimum conditions to produce palm fatty acid distillate (PFAD)-derived-methyl esters via esterification have been demonstrated with the aid of the response surface methodology (RSM) with central composite rotatable design in the presence of heterogeneous acid catalyst. The effect of four reaction variables, reaction time (30–110 min), reaction temperature (30–70°C), catalyst concentration (1–3 wt.%) and methanol : PFAD molar ratio (3 : 1–11 : 1), were investigated. The reaction time had the most influence on the yield response, while the interaction between the reaction time and the catalyst concentration, with an F-value of 95.61, contributed the most to the esterification reaction. The model had an R2-value of 0.9855, suggesting a fit model, which gave a maximum yield of 95%. The fuel properties of produced PFAD methyl ester were appraised based on the acid value, iodine value, cloud and pour points, flash point, kinematic viscosity, density, ash and water contents and were compared with biodiesel EN 14214 and ASTM D-6751 standard limits. The PFAD methyl ester was further blended with petro-diesel from B0, B3, B5, B10, B20 and B100, on a volumetric basis. The blends were characterized by TGA, DTG and FTIR. With an acid value of 0.42 (mg KOH g−1), iodine value of 63 (g.I2/100 g), kinematic viscosity of 4.31 (mm2 s−1), the PFAD methyl ester has shown good fuel potential, as all of its fuel properties were within the permissible international standards for biodiesel.

]]>
<![CDATA[Functional composition and diversity of leaf traits in subalpine versus alpine vegetation in the Apennines]]> https://www.researchpad.co/article/N98080eca-e8db-4056-a588-dfb3dbc8c641

Abstract

Mediterranean high mountain grasslands are shaped by climatic stress and understanding their functional adaptations can contribute to better understanding ecosystems’ response to global change. The present work analyses the plant functional traits of high-elevation grasslands growing in Mediterranean limestone mountains to explore, at the community level, the presence of different plant strategies for resource use (conservative vs. acquisitive) and functional diversity syndromes (convergent or divergent). Thus, we compared the functional composition and diversity of the above-ground traits related to resource acquisition strategies of subalpine and alpine calcareous grasslands in the central Apennines, a mountain region characterized by a dry-summer Mediterranean climate. We used georeferenced vegetation plots and field-measured plant functional traits (plant maximum height, specific leaf area and leaf dry matter content) for the dominant species of two characteristic vegetation types: the subalpine Sesleria juncifolia community and the alpine Silene acaulis community. Both communities are of particular conservation concern and are rich in endemic species for which plant functional traits are measured here for the first time. We analysed the functional composition and diversity using the community-weighted mean trait index and the functional diversity using Rao’s function, and we assessed how much the observed pattern deviated from a random distribution by calculating the respective standardized effect sizes. The results highlighted that an acquisitive resource use strategy and relatively higher functional diversity of leaf traits prevail in the alpine S. acaulis community, optimizing a rapid carbon gain, which would help overcome the constraints exerted by the short growing season. The divergent functional strategy underlines the co-occurrence of different leaf traits in the alpine grasslands, which shows good adaptation to a microhabitat-rich environment. Conversely, in the subalpine S. juncifolia grassland, a conservative resource use strategy and relatively lower functional diversity of the leaf traits are likely related to a high level resistance to aridity over a longer growing season. Our outcomes indicate the preadaptation strategy of the subalpine S. juncifolia grassland to shift upwards to the alpine zone that will become warmer and drier as a result of anthropogenic climate change.

]]>
<![CDATA[Moulding three-dimensional curved structures by selective heating]]> https://www.researchpad.co/article/N2da92343-9e26-4dba-8b67-a4f60d3c8a08

It is of interest to fabricate curved surfaces in three dimensions from homogeneous material in the form of flat sheets. The aim is not just to obtain a surface which has a desired intrinsic Riemannian metric, but to get the desired embedding in R3 up to translations and rotations. In this paper, we demonstrate three generic methods of moulding a flat sheet of thermo-responsive plastic by selective contraction induced by targeted heating. These methods do not involve any cutting and gluing, which is a property they share with origami. The first method is inspired by tailoring, which is the usual method for making garments out of plain pieces of cloth. Unlike usual tailoring, this method produces the desired embedding in R3. The second method just aims to bring about the desired new Riemannian metric via an appropriate pattern of local contractions, without directly controlling the embedding. The third method is based on triangulation, and seeks to induce the desired local distances. This results in getting the desired embedding in R3. The second and the third methods, and also the first method for the special case of surfaces of revolution, are algorithmic in nature. We explain these methods and show examples.

]]>
<![CDATA[A numerical study on oxygen adsorption in porous media of coal rock based on fractal geometry]]> https://www.researchpad.co/article/N84c19b34-365f-4a46-bbbb-d5e578630a59

In order to explore the factors affecting coal spontaneous combustion, the fractal characteristics of coal samples are tested, and a pore-scale model for oxygen adsorption in coal porous media is developed based on self-similar fractal model. The liquid nitrogen adsorption experiments show that the coal samples indicate evident fractal scaling laws at both low-pressure and high-pressure sections, and the fractal dimensions, respectively, represent surface morphology and pore structure of coal rock. The pore-scale model has been validated by comparing with available experimental data and numerical simulation. The present numerical results indicate that the oxygen adsorption depends on both the pore structures and temperature of coal rock. The oxygen adsorption increases with increased porosity, fractal dimension and ratio of minimum to maximum pore sizes. The edge effect can be clearly seen near the cavity/pore, where the oxygen concentration is low. The correlation between the oxygen adsorption and temperature is found to obey Langmuir adsorption theory, and a new formula for oxygen adsorption and porosity is proposed. This study may help understanding the mechanisms of oxygen adsorption and accordingly provide guidelines to lower the risk of spontaneous combustion of coal.

]]>
<![CDATA[Correction to ‘Organic matter removal from mother liquor of gas field wastewater by electro-Fenton process with the addition of H2O2: effect of initial pH’]]> https://www.researchpad.co/article/N3eef130c-63c1-4544-a5ad-d082b766f783 ]]> <![CDATA[Utilization of metakaolin-based geopolymer as a mud-cake solidification agent to enhance the bonding strength of oil well cement–formation interface]]> https://www.researchpad.co/article/N089adae7-2535-4254-99f4-a0753c58e3f2

This research work designed a novel mud-cake solidification method to improve the zonal isolation of oil and gas wells. The calculation methodology of mud-cake compressive strength was proposed. The optimal formula of activator and solid precursors, the proper activating time and the best activator concentration were determined by the compressive strength test. The effects of solid precursors on the properties of drilling fluid were evaluated. Test results show that the respective percentage of bentonite, metakaolin, slag and activator is 1 : 1 : 0.3 : 0.8, as well as the optimum ratio of Na2SiO3/NaOH is 40 : 1. The optimum concentration of activator is 0.21 and the activating time should be more than 10 min. The solid precursors did not show any bad influence on the rheological property of drilling fluids. Even though the compressive strength decreased when the solid precursors blended with barite, the strength values can still achieve 8 MPa. The reaction of metakaolin and activator formed cross-link structure in the mud-cake matrix, which enhanced the connection of the loose bentonite particles, lead to the significant enhancement of shear bonding strength and hydraulic bonding strength. This mud-cake solidification method provides a new approach to improve the quality of zonal isolation.

]]>
<![CDATA[Interference in multi-user optical wireless communications systems]]> https://www.researchpad.co/article/N75da2d43-ae6d-4ff1-ae66-964c690eb193

Visible light communications (VLC) (including LiFi) represent a subset of the broader field of optical wireless communications. Where narrow beams, typical of free space optical communications are largely free from interference. VLC encompasses use cases involving combined illumination and data access and supporting a wireless access point (AP) model. The use of many units provides scaling of spatial coverage for both lighting and data access. However, AP replication in close proximity creates many interference challenges that motivate the investigation embodied in this paper. In particular, we frame the interference challenge in the context of existing strategies for driving improvements in link performance and consider the impacts of multiple users, multiple sources and multiple cells. Lastly, we review the state of existing research in this area and recommend areas for further study.

This article is part of the theme issue ‘Optical wireless communication’.

]]>
<![CDATA[Spectrally efficient optical orthogonal frequency division multiplexing]]> https://www.researchpad.co/article/N4968b663-04b2-4f32-b5ab-016e018569ad

This paper charts the development of spectrally efficient forms of optical orthogonal frequency division multiplexing (OFDM) that are suited for intensity-modulated direct detection systems, such as wireless optical communications. The journey begins with systems using a DC-bias to ensure that no parts of the signal that modulates the optical source are negative in value, as negative optical intensity is unphysical. As the DC-part of the optical signal carries no information, it is wasteful in energy; thus asymmetrically clipped optical OFDM was developed, removing any negative-going peaks below the mean. Unfortunately, the clipping causes second-order distortion and intermodulation, so some subcarriers appear to be unusable, halving spectral efficiency; this is similar for unipolar and flipped optical OFDM. Thus, a considerable effort has been made to regain spectral efficiency, using layered techniques where the clipping distortion is mostly cancelled at the receiver, from a knowledge of one unpolluted layer, enabling one or more extra ‘layers/paths/depths’ to be received on the previously unusable subcarriers. Importantly, for a given optical power and high-order modulation, layered methods offer the best spectral efficiencies and need the lowest signal-to-noise ratios, especially if diversity combining is used. Thus, they could be important for high-bandwidth optical fibre systems. Efficient methods of generating all layers simultaneously, using fast Fourier transforms with their partial calculations extracted, are discussed, as are experimental demonstrations in both wireless and short-haul communications links. A musical analogy is also provided, which may point to how orchestral and rock music is deciphered in the brain.

This article is part of the theme issue ‘Optical wireless communication’.

]]>
<![CDATA[Optical spatial modulation design]]> https://www.researchpad.co/article/N3f159679-1d10-4747-9eb8-3c2cb0ca29e0

Visible light communication (VLC) systems are inherently signal-to-noise ratio (SNR) limited due to link budget constraints. One favourable method to overcome this limitation is to focus on the pre-log factors of the channel capacity. Multiple-input multiple-output (MIMO) techniques are therefore a promising avenue of research. However, inter-channel interference in MIMO limits the achievable capacity. Spatial modulation (SM) avoids this limitation. Furthermore, the performance of MIMO systems in VLC is limited by the similarities among spatial channels. This limitation becomes particularly severe in intensity modulation/direct detection (IM/DD) systems because of the lack of phase information. The motivation of this paper is to propose a system that results in a multi-channel transmission system that enables reliable multi-user optical MIMO SM transmission without the need for a precoder, power allocation algorithm or additional optics at the receiver. A general bit error performance model for the SM system is developed for an arbitrary number of light-emitting diodes (LEDs) in conjunction with pulse amplitude modulation. Based on this model, an LED array structure is designed to result in spatially separated multiple channels by manipulating the transmitter geometry.

This article is part of the theme issue ‘Optical wireless communication’.

]]>
<![CDATA[Optical wireless communication]]> https://www.researchpad.co/article/Nffaec75f-48be-4413-9b0c-9066654cbcee

Optical wireless communication has attracted significant interest recently in industry and academia. This special issue features a collection of inter-related papers with the intention to cover all necessary multidisciplinary challenges to realize optical wireless networks. We hope that this special issue will serve as a comprehensive reference and that it will be a resource which fosters many more new ideas for this rapidly emerging field.

This article is part of the theme issue ‘Optical wireless communication’.

]]>
<![CDATA[Indoor multiuser visible light communication systems using Hadamard-coded modulation]]> https://www.researchpad.co/article/Nab6b0eec-5f80-42f3-9666-71bf45151e97

Visible light communications (VLC) is a short-range optical wireless communication technology that uses light-emitting diodes (LEDs) as lighting devices and data transmitters. This paper describes a multiuser VLC system using Hadamard-coded modulation (HCM) for indoor data transmission. Considering the peak transmitted power limit of the LEDs, a DC-reduced HCM (DCR-HCM) is used to reduce the nonlinear clipping distortion. Since the Hadamard codewords have different bandwidth requirements for a given symbol rate, they can be assigned to users with varying hardware capabilities. Optimally assigning codewords to users is found to significantly improve the average throughput, up to twice higher than a random assignment for a typical scenario. When the number of active users is less than the size of the Hadamard matrix used, more than one codeword can be assigned per user, which further improves the throughput. This paper also examines a scenario where multiple lamps in an indoor space transmit the same data. Since the time of arrival for the received signals emitted from different lamps is different, the Hadamard codes received are no longer orthogonal, resulting in multiple access interference and inter-chip interference. The number of acceptable codewords is computed based on the specific interference experienced in different parts of the indoor space. The spatial distribution of the maximum throughput is also simulated, showing that the ratio of the maximum to the minimum data rate can be as high as 10 when considering the entire area of a typical indoor room.

This article is part of the theme issue ‘Optical wireless communication’.

]]>
<![CDATA[Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systems]]> https://www.researchpad.co/article/Nc483aa06-8794-4891-a652-ae281e6f3723

Gallium nitride-based light-emitting diodes (LEDs) have revolutionized the lighting industry with their efficient generation of blue and green light. While broad-area (square millimetre) devices have become the dominant LED lighting technology, fabricating LEDs into micro-scale pixels (micro-LEDs) yields further advantages for optical wireless communications (OWC), and for the development of smart-lighting applications such as tracking and imaging. The smaller active areas of micro-LEDs result in high current density operation, providing high modulation bandwidths and increased optical power density. Fabricating micro-LEDs in array formats allows device layouts to be tailored for target applications and provides additional degrees of freedom for OWC systems. Temporal and spatial control is crucial to use the full potential of these micro-scale sources, and is achieved by bonding arrays to pitch-matched complementary metal-oxide-semiconductor control electronics. These compact, integrated chips operate as digital-to-light converters, providing optical signals from digital inputs. Applying the devices as projection systems allows structured light patterns to be used for tracking and self-location, while simultaneously providing space-division multiple access communication links. The high-speed nature of micro-LED array devices, combined with spatial and temporal control, allows many modes of operation for OWC providing complex functionality with chip-scale devices.

This article is part of the theme issue ‘Optical wireless communication’.

]]>