ResearchPad - 1875 https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Trajectories of early to mid-life adulthood BMI and incident diabetes: the China Health and Nutrition Survey]]> https://www.researchpad.co/article/elastic_article_9093 This longitudinal study aims to characterize distinct body mass index (BMI) trajectories during early to mid-life adulthood and to explore the association between BMI change from young adulthood to midlife and incident diabetes.Research design and methodsThis study included 7289 adults who had repeatedly measured BMI 3–9 times during 1989–2011 and information on incident diabetes. Latent class growth mixed model (LCGMM) was used to identify different BMI trajectories. Cox proportional hazard models were used to investigate the association between the trajectory group membership and incident hyperglycemia, adjusting for covariates. The hyperglycemia group included individuals with prediabetes or diabetes. The model-estimated BMI levels and slopes were calculated at each age point in 1-year intervals according to the model parameters and their first derivatives, respectively. Logistic regression analyses were used to examine the association of model-estimated levels and slopes of BMI at each age point with incident hyperglycemia. The area under the curve (AUC) was computed from longitudinal growth curve models during the follow-up for each individual. Prior to the logistic regression analyses, quartiles of total, baseline, and incremental AUC values were calculated.ResultsThree distinct trajectories were characterized by LCGMM, comprising of low-increasing group (n=5136), medium-increasing group (n=1914), and high-increasing group (n=239). Compared with the low-increasing group, adjusted HRs and 95% CIs were 1.21 (0.99 to 1.48) and 1.56 (1.06 to 2.30) for the medium-increasing and the high-increasing group, respectively. The adjusted standardized ORs of model-estimated BMI levels increased among 20–50 years, ranging from 0.98 (0.87 to 1.10) to 1.19 (1.08 to 1.32). The standardized ORs of level-adjusted linear slopes increased gradually from 1.30 (1.16 to 1.45) to 1.42 (1.21 to 1.67) during 20–29 years, then decreased from 1.41 (1.20 to 1.66) to 1.20 (1.08 to 1.33) during 30–43 years, and finally increased to 1.20 (1.04 to 1.38) until 50 years. The fourth quartile of incremental AUC (OR=1.31, 95% CI 1.03 to 1.66) was significant compared with the first quartile, after adjustment for covariates.ConclusionsThese findings indicate that the BMI trajectories during early adulthood were significantly associated with later-life diabetes. Young adulthood is a crucial period for the development of diabetes, which has implications for early prevention. ]]> <![CDATA[Enrichment of Tc1 cells and T cell resistance to suppression are associated with dysglycemia in the visceral fat in human obesity]]> https://www.researchpad.co/article/N27afc553-0021-4237-b186-f7fbb347e9b5 Insulin resistance, defined as tissue inflammation leading to type 2 diabetes, is a feature of obesity. The immune system has been implicated in its pathogenesis, but the role of adaptive immunity in humans remains uncertain. Here, we aim to determine whether specific phenotypic and functional properties of visceral adipose tissue (VAT)-derived CD4 conventional T cells (Tconv) and CD8 T cells are associated with dysglycemia in human obesity.Research design and methodsPeripheral blood and the stromal vascular fraction of obese patients without dysglycemia (n=23), with impaired fasting glucose or type 2 diabetes (n=17), and non-diabetic lean controls (n=11) were studied. Characterization of memory, activation profile, cytokine production, proliferative capacity, cytotoxic potential and transforming growth factor-β-mediated suppression of CD4 Tconv and CD8 T cells was performed. Correlation between anthropometric/metabolic parameters and VAT-derived T cell subsets was determined.ResultsIn the VAT of the overall obese population, reduced frequency of interferon-γ-producing or tumor necrosis factor-α-producing CD4 (ie, T helper 1, Th1) and CD8 (ie, cytotoxic type 1, Tc1) T cells, as well as interleukin-17-producing CD8 T cells (ie, Tc17), was evident when compared with lean controls. However, enrichment of Tc1 cells, together with the impaired ability of CD4 and CD8 T cells to be suppressed, distinguished the visceral fat of obese patients with dysglycemia from the one of non-diabetic obese patients. Moreover, accumulation of Th1 and Tc1 cells in the VAT correlated with anthropometric and metabolic parameters.ConclusionsHere, we define the VAT-specific characteristics of T cells in human obesity, showing that accumulation of Tc1 cells and T cell resistance to suppression can be harmful to the development of obesity-induced diabetes. These findings open new directions to investigate immunological targets in the obesity setting. ]]> <![CDATA[Proglucagon peptide secretion profiles in type 2 diabetes before and after bariatric surgery: 1-year prospective study]]> https://www.researchpad.co/article/N5d3365c4-9830-4d01-a239-7d336c5820f0

Introduction

Hyperglucagonemia is a key pathophysiological driver of type 2 diabetes. Although Roux-en-Y gastric bypass (RYGB) is a highly effective treatment for diabetes, it is presently unclear how surgery alters glucagon physiology. The aim of this study was to characterize the behavior of proglucagon-derived peptide (glucagon, glucagon-like peptide-1 (GLP-1), oxyntomodulin, glicentin) secretion after RYGB surgery.

Research design and methods

Prospective study of 19 patients with obesity and pre-diabetes/diabetes undergoing RYGB. We assessed the glucose, insulin, GLP-1, glucose-dependent insulinotropic peptide (GIP), oxyntomodulin, glicentin and glucagon responses to a mixed-meal test (MMT) before and 1, 3 and 12 months after surgery. Glucagon was measured using a Mercodia glucagon ELISA using the ‘Alternative’ improved specificity protocol, which was validated against a reference liquid chromatography combined with mass spectrometry method.

Results

After RYGB, there were early improvements in fasting glucose and glucose tolerance and the insulin response to MMT was accelerated and amplified, in parallel to significant increases in postprandial GLP-1, oxyntomodulin and glicentin secretion. There was a significant decrease in fasting glucagon levels at the later time points of 3 and 12 months after surgery. Glucagon was secreted in response to the MMT preoperatively and postoperatively in all patients and there was no significant change in this postprandial secretion. There was no significant change in GIP secretion.

Conclusions

There is a clear difference in the dynamics of secretion of proglucagon peptides after RYGB. The reduction in fasting glucagon secretion may be one of the mechanisms driving later improvements in glycemia after RYGB.

Trial registration number

NCT01945840.

]]>
<![CDATA[Glucose metabolism among obese and non-obese children of mothers with gestational diabetes]]> https://www.researchpad.co/article/Nbc5cf79c-8d07-4fa0-a7c4-8c608bc5c43b

Objectives

Abdominal obesity is more closely associated with diabetes than general obesity in adults, however, it is unknown which kind of obesity is more closely associated with abnormal glucose metabolism in children.

Research design and methods

We recruited 973 children (aged 3.08±1.06) of mothers with prior gestational diabetes mellitus (GDM). Children’s height, weight, waist circumstance, fasting glucose and insulin were measured using standardized methods. Logistic regression models were used to assess the single and joint associations of general and abdominal obesity with the risks of hyperglycemia (the upper quartile of fasting glucose), insulin resistance (the upper quartile of homeostatic model assessment of insulin resistance (HOMA-IR)), and β-cell dysfunction (the lower quartile of HOMA-%β).

Results

Compared with normal weight children, children with general overweight/obesity had higher levels of HOMA-IR and HOMA-%β, higher ORs for hyperglycemia (1.56, 95% CI 1.06 to 2.30) and insulin resistance (3.44, 95% CI 2.32 to 5.09), but a lower OR for β-cell dysfunction (0.65, 95% CI 0.41 to 1.04). Children with abdominal obesity had an increased risk of insulin resistance (2.54, 95% CI 1.71 to 3.76) but not hyperglycemia and β-cell dysfunction compared with children with normal waist circumstance. In the joint analyses, general overweight children with and without abdominal obesity had an increased risk of hyperglycemia and insulin resistance compared with normal weight children.

Conclusions

General obesity was more closely associated with abnormal glucose metabolism than abdominal obesity in children of mothers with GDM.

]]>
<![CDATA[Loss of voltage-gated proton channel Hv1 leads to diet-induced obesity in mice]]> https://www.researchpad.co/article/N5dc23c6e-94f2-4fc2-aad4-31232d1c5fe5

Objective

The voltage-gated proton channel Hv1 has been proposed to mediate NADPH oxidase (NOX) function by regulating intracellular pH during respiratory bursts. In our previous work, we showed that Hv1 is expressed in pancreatic β cells and positively regulates insulin secretion. Here, we investigated the role of Hv1 in adipose tissue differentiation, metabolic homeostasis and insulin sensitivity using Hv1 knockout (KO) mice.

Design

Mice with genetic deletion of Hv1 are treated with high-fat diet (HFD) similar to wild-type (WT) mice. Body weight gain, adiposity, insulin sensitivity and gene expressions in both adipose tissue and liver were analyzed.

Results

Mice with genetic deletion of Hv1 display overt obesity with higher body weight gain and accumulation of adipose tissue compared with similarly HFD-treated WT. Hv1-deficient mice develop more glucose intolerance than WT, but no significant difference in insulin resistance, after fed with HFD. Deficiency of Hv1 results in a remarkable increase in epididymal adipocyte weight and size, while the gene expressions of proinflammatory factors and cytokines are obviously enhanced in the HFD-fed mice. Furthermore, the gene expression of Hv1 is increased in the HFD-fed mice, which is accompanied by the increase of NOX2 and NOX4. In addition, there is more severely diet-induced steatosis and inflammation in liver in KO mice.

Conclusion

Our data demonstrated that lacking of Hv1 results in diet-induced obesity in mice through inflammation and hepatic steatosis. This study suggested that Hv1 acts as a positive regulator of metabolic homeostasis and a potential target for antiobesity drugs in therapy and may serve as an adaptive mechanism in cooperating with NOX to mediate reactive oxygen species for adipogenesis and insulin sensitivity.

]]>
<![CDATA[Low-energy total diet replacement intervention in patients with type 2 diabetes mellitus and obesity treated with insulin: a randomized trial]]> https://www.researchpad.co/article/Ncff20266-a5ff-4287-b387-51d6cde913ea

Objectives

The management of patients with long-standing type 2 diabetes and obesity receiving insulin therapy (IT) is a substantial clinical challenge. Our objective was to examine the effect of a low-energy total diet replacement (TDR) intervention versus standardized dietetic care in patients with long-standing type 2 diabetes and obesity receiving IT.

Research design and methods

In a prospective randomized controlled trial, 90 participants with type 2 diabetes and obesity receiving IT were assigned to either a low-energy TDR (intervention) or standardized dietetic care (control) in an outpatient setting. The primary outcome was weight loss at 12 months with secondary outcomes including glycemic control, insulin burden and quality of life (QoL).

Results

Mean weight loss at 12 months was 9.8 kg (SD 4.9) in the intervention and 5.6 kg (SD 6.1) in the control group (adjusted mean difference −4.3 kg, 95% CI −6.3 to 2.3, p<0.001). IT was discontinued in 39.4% of the intervention group compared with 5.6% of the control group among completers. Insulin requirements fell by 47.3 units (SD 36.4) in the intervention compared with 33.3 units (SD 52.9) in the control (−18.6 units, 95% CI −29.2 to –7.9, p=0.001). Glycated Hemoglobin (HbA1c) fell significantly in the intervention group (4.7 mmol/mol; p=0.02). QoL improved in the intervention group of 11.1 points (SD 21.8) compared with 0.71 points (SD 19.4) in the control (8.6 points, 95% CI 2.0 to 15.2, p=0.01).

Conclusions

Patients with advanced type 2 diabetes and obesity receiving IT achieved greater weight loss using a TDR intervention while also reducing or stopping IT and improving glycemic control and QoL. The TDR approach is a safe treatment option in this challenging patient group but requires maintenance support for long-term success.

Trial registration number

ISRCTN21335883.

]]>