ResearchPad - 1877 Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Proinsulin-specific T regulatory cells may control immune responses in type 1 diabetes: implications for adoptive therapy]]> Here we looked for possible mechanisms regulating the progression of type 1 diabetes mellitus (T1DM). In this disease, autoaggressive T cells (T conventional cells, Tconvs) not properly controlled by T regulatory cells (Tregs) destroy pancreatic islets.Research design and methodsWe compared the T-cell compartment of patients with newly diagnosed T1DM (NDT1DM) with long-duration T1DM (LDT1DM) ones. The third group consisted of patients with LDT1DM treated previously with polyclonal Tregs (LDT1DM with Tregs). We have also looked if the differences might be dependent on the antigen specificity of Tregs expanded for clinical use and autologous sentinel Tconvs.ResultsPatients with LDT1DM were characterized by T-cell immunosenescence-like changes and expansion of similar vβ/T-cell receptor (TCR) clones in Tconvs and Tregs. The treatment with Tregs was associated with some inhibition of these effects. Patients with LDT1DM possessed an increased percentage of various proinsulin-specific T cells but not GAD65-specific ones. The percentages of all antigen-specific subsets were higher in the expansion cultures than in the peripheral blood. The proliferation was more intense in proinsulin-specific Tconvs than in specific Tregs but the levels of some proinsulin-specific Tregs were exceptionally high at baseline and remained higher in the expanded clinical product than the levels of respective Tconvs in sentinel cultures.ConclusionsT1DM is associated with immunosenescence-like changes and reduced diversity of T-cell clones. Preferential expansion of the same TCR families in both Tconvs and Tregs suggests a common trigger/autoantigen responsible. Interestingly, the therapy with polyclonal Tregs was associated with some inhibition of these effects. Proinsulin-specific Tregs appeared to be dominant in the immune responses in patients with T1DM and probably associated with better control over respective autoimmune Tconvs.Trial registration numberEudraCT 2014-004319-35. ]]> <![CDATA[Outcomes of pancreas transplantation in older diabetic patients]]>


Improvement in insulin alternatives is leading to a delayed presentation of microvascular and macrovascular complications of diabetes. The objective of this study was to evaluate the long-term outcomes of older (≥50 years) diabetic patients who receive a pancreas transplantation (PT).

Research design and methods

We retrospectively evaluated all 338 PTs performed at our center between 2000 and 2016 (mean follow-up 9.4±4.9 years). Recipient and graft survivals were estimated for up to 10 years after PT. Major adverse cardiovascular events (MACEs) before and after PT were included in the analysis.


Thirty-nine patients (12%) were ≥50 years old (52.7±2.3 years) at the day of PT, of which 29 received a simultaneous pancreas–kidney transplantation (SPK) and 10 a pancreas after kidney transplantation (PAK). SPK recipients were first transplants, whereas in the PAK up to 50% were pancreas re-transplantations. Recipient and pancreas graft survivals at 10 years were similar between the group <50 years old and the older group for both SPK and PAK (log-rank p>0.05). The prevalence of MACE prior to PT was similar between both groups (31% vs 29%). Following PT, older recipients presented inferior post-transplant MACE-free survival. In a multivariate regression model, diabetes vintage (HR 1.054, p=0.03) and pre-transplantation MACE (HR 1.98, p=0.011), but not recipient age (HR 1.45, p=0.339), were associated with post-transplant MACE.


Long-term survival of older pancreas transplant recipients are similar to younger counterparts. Diabetes vintage, but not age, increased the risk of post-transplantation MACE. These results suggest pancreas transplantation is a valuable treatment alternative to older diabetic patients.