ResearchPad - 203 https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Runx1 promotes scar deposition and inhibits myocardial proliferation and survival during zebrafish heart regeneration]]> https://www.researchpad.co/article/elastic_article_7555 Highlighted Article: The transcription-factor Runx1 orchestrates the injury response of many cardiac cell types, balancing collagen and fibrin deposition and clearance, as well as affecting myocyte proliferation and survival in zebrafish.

]]>
<![CDATA[Analysis of statistical correlations between properties of adaptive walks in fitness landscapes]]> https://www.researchpad.co/article/N2721638e-c6ac-41d4-8696-8dae5a7fc88a

The fitness landscape metaphor has been central in our way of thinking about adaptation. In this scenario, adaptive walks are idealized dynamics that mimic the uphill movement of an evolving population towards a fitness peak of the landscape. Recent works in experimental evolution have demonstrated that the constraints imposed by epistasis are responsible for reducing the number of accessible mutational pathways towards fitness peaks. Here, we exhaustively analyse the statistical properties of adaptive walks for two empirical fitness landscapes and theoretical NK landscapes. Some general conclusions can be drawn from our simulation study. Regardless of the dynamics, we observe that the shortest paths are more regularly used. Although the accessibility of a given fitness peak is reasonably correlated to the number of monotonic pathways towards it, the two quantities are not exactly proportional. A negative correlation between predictability and mean path divergence is established, and so the decrease of the number of effective mutational pathways ensures the convergence of the attraction basin of fitness peaks. On the other hand, other features are not conserved among fitness landscapes, such as the relationship between accessibility and predictability.

]]>
<![CDATA[Interplay between competitive and cooperative interactions in a three-player pathogen system]]> https://www.researchpad.co/article/N327f5bff-126a-495d-b2dd-d7a66aefee9c

In ecological systems, heterogeneous interactions between pathogens take place simultaneously. This occurs, for instance, when two pathogens cooperate, while at the same time, multiple strains of these pathogens co-circulate and compete. Notable examples include the cooperation of human immunodeficiency virus with antibiotic-resistant and susceptible strains of tuberculosis or some respiratory infections with Streptococcus pneumoniae strains. Models focusing on competition or cooperation separately fail to describe how these concurrent interactions shape the epidemiology of such diseases. We studied this problem considering two cooperating pathogens, where one pathogen is further structured in two strains. The spreading follows a susceptible-infected-susceptible process and the strains differ in transmissibility and extent of cooperation with the other pathogen. We combined a mean-field stability analysis with stochastic simulations on networks considering both well-mixed and structured populations. We observed the emergence of a complex phase diagram, where the conditions for the less transmissible, but more cooperative strain to dominate are non-trivial, e.g. non-monotonic boundaries and bistability. Coupled with community structure, the presence of the cooperative pathogen enables the coexistence between strains by breaking the spatial symmetry and dynamically creating different ecological niches. These results shed light on ecological mechanisms that may impact the epidemiology of diseases of public health concern.

]]>
<![CDATA[Extinction debt in local habitats: quantifying the roles of random drift, immigration and emigration]]> https://www.researchpad.co/article/Nbae7afa5-fad1-4203-8c7c-4653b8f5da69

We developed a time-dependent stochastic neutral model for predicting diverse temporal trajectories of biodiversity change in response to ecological disturbance (i.e. habitat destruction) and dispersal dynamic (i.e. emigration and immigration). The model is general and predicts how transition behaviours of extinction may accumulate according to a different combination of random drift, immigration rate, emigration rate and the degree of habitat destruction. We show that immigration, emigration, the areal size of the destroyed habitat and initial species abundance distribution (SAD) can impact the total biodiversity loss in an intact local area. Among these, the SAD plays the most deterministic role, as it directly determines the initial species richness in the local target area. By contrast, immigration was found to slow down total biodiversity loss and can drive the emergence of species credits (i.e. a gain of species) over time. However, the emigration process would increase the extinction risk of species and accelerate biodiversity loss. Finally but notably, we found that a shift in the emigration rate after a habitat destruction event may be a new mechanism to generate species credits.

]]>
<![CDATA[Improved susceptible–infectious–susceptible epidemic equations based on uncertainties and autocorrelation functions]]> https://www.researchpad.co/article/N2802605c-90ee-481f-a73d-8548a38d6fa2

Compartmental equations are primary tools in the study of disease spreading processes. They provide accurate predictions for large populations but poor results whenever the integer nature of the number of agents is evident. In the latter instance, uncertainties are relevant factors for pathogen transmission. Starting from the agent-based approach, we investigate the role of uncertainties and autocorrelation functions in the susceptible–infectious–susceptible (SIS) epidemic model, including their relationship with epidemiological variables. We find new differential equations that take uncertainties into account. The findings provide improved equations, offering new insights on disease spreading processes.

]]>
<![CDATA[Fitness differences suppress the number of mating types in evolving isogamous species]]> https://www.researchpad.co/article/N595d4ccd-3e76-459c-a33a-3b04b442fd1b

Sexual reproduction is not always synonymous with the existence of two morphologically different sexes; isogamous species produce sex cells of equal size, typically falling into multiple distinct self-incompatible classes, termed mating types. A long-standing open question in evolutionary biology is: what governs the number of these mating types across species? Simple theoretical arguments imply an advantage to rare types, suggesting the number of types should grow consistently; however, empirical observations are very different. While some isogamous species exhibit thousands of mating types, such species are exceedingly rare, and most have fewer than 10. In this paper, we present a mathematical analysis to quantify the role of fitness variation—characterized by different mortality rates—in determining the number of mating types emerging in simple evolutionary models. We predict that the number of mating types decreases as the variance of mortality increases.

]]>
<![CDATA[The regulation of the homeostasis and regeneration of peripheral nerve is distinct from the CNS and independent of a stem cell population]]> https://www.researchpad.co/article/5c4b8f6dd5eed0c484870769

ABSTRACT

Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury. Moreover, whereas oligodendrocytes are produced throughout life from a precursor pool, we find that the corresponding cell of the peripheral nervous system, the myelinating Schwann cell (mSC), does not turn over in the adult. However, following injury, all mSCs can dedifferentiate to the proliferating progenitor-like Schwann cells (SCs) that orchestrate the regenerative response. Lineage analysis shows that these newly migratory, progenitor-like cells redifferentiate to form new tissue at the injury site and maintain their lineage, but can switch to become a non-myelinating SC. In contrast, increased plasticity is observed during tumourigenesis. These findings show that peripheral nerves have a distinct mechanism for maintaining homeostasis and can regenerate without the need for an additional stem cell population.

This article has an associated ‘The people behind the papers’ interview.

]]>
<![CDATA[Cooperation and the evolution of intelligence]]> https://www.researchpad.co/article/5ac4bebb463d7e07506febc4

The high levels of intelligence seen in humans, other primates, certain cetaceans and birds remain a major puzzle for evolutionary biologists, anthropologists and psychologists. It has long been held that social interactions provide the selection pressures necessary for the evolution of advanced cognitive abilities (the ‘social intelligence hypothesis’), and in recent years decision-making in the context of cooperative social interactions has been conjectured to be of particular importance. Here we use an artificial neural network model to show that selection for efficient decision-making in cooperative dilemmas can give rise to selection pressures for greater cognitive abilities, and that intelligent strategies can themselves select for greater intelligence, leading to a Machiavellian arms race. Our results provide mechanistic support for the social intelligence hypothesis, highlight the potential importance of cooperative behaviour in the evolution of intelligence and may help us to explain the distribution of cooperation with intelligence across taxa.

]]>
<![CDATA[Wnt inhibition promotes vascular specification of embryonic cardiac progenitors]]> https://www.researchpad.co/article/5b4bfa2c463d7e022037ff7b

ABSTRACT

Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs.

]]>
<![CDATA[Bifacial cambium stem cells generate xylem and phloem during radial plant growth]]> https://www.researchpad.co/article/5c61b7e9d5eed0c48493817f

ABSTRACT

A reduced rate of stem cell division is considered a widespread feature which ensures the integrity of genetic information during somatic development of plants and animals. Radial growth of plant shoots and roots is a stem cell-driven process that is fundamental for the mechanical and physiological support of enlarging plant bodies. In most dicotyledonous species, the underlying stem cell niche, the cambium, generates xylem inwards and phloem outwards. Despite the importance and intriguing dynamics of the cambium, the functional characterization of its stem cells is hampered by the lack of experimental tools for accessing distinct cambium sub-domains. Here, we use the hypocotyl of Arabidopsis thaliana to map stem cell activity in the proliferating cambium. Through pulse labeling and genetically encoded lineage tracing, we find that a single bifacial stem cell generates both xylem and phloem cell lineages. This cell is characterized by a specific combination of PXY (TDR), SMXL5 and WOX4 gene activity and a high division rate in comparison with tissue-specific progenitors. Our analysis provides a cellular fate map of radial plant growth, and suggests that stem cell quiescence is not a general prerequisite for life-long tissue production.

This article has an associated ‘The people behind the papers’ interview.

]]>
<![CDATA[Scaling the phase-planes of social dilemma strengths shows game-class changes in the five rules governing the evolution of cooperation]]> https://www.researchpad.co/article/5c1522b8d5eed0c4840bd5ba

Game theory has been extensively applied to help explain how cooperative behaviour is promoted in human and animal societies. How do humans and animals establish reciprocity when confronting a social dilemma? In 2006, Nowak theoretically proved that numerous mechanisms and models for evolving cooperative behaviour reported over the last few decades can be distilled into five reciprocity mechanisms (rules). Additionally, universal scaling parameters were proposed to measure two different types of dilemmas, namely, the gamble-intending dilemma (GID) and risk-averting dilemma (RAD). In this work, by drawing a RAD–GID phase-plane diagram for pair-wise games, we prove that these five rules are indeed quite different for the resolution (relaxation) of the two dilemmas. These diagrams also demonstrate whether and when game-class change (resolution of a dilemma) occurs, thus implying how defectors can be eliminated.

]]>