ResearchPad - Biochemistry https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Analysis of the data on titration of native and peroxynitrite modified αA- and αB-crystallins by Cu2+-ions]]> https://www.researchpad.co/product?articleinfo=N53acec24-e321-43b9-bc94-a3812bb8ff83

The interaction of αA- and αB-crystallins with Cu2+ ion modulates their structure and chaperone-like activity which is important for lens transparency. Theoretical analysis of the dependences of fluorescence intensity of native αA- and αB-crystallins and αA- and αB-crystallins modified by peroxynitrite on concentration of Cu2+ ions has been carried out. It has been shown that one subunit of native αA-crystallin contains two equivalent Cu2+-binding sites. The microscopic dissociation constant for Cu2+–αA-crystallin complex (Kdiss) was found to be equal to 9.7 µM. For peroxynitrite modified αA-crystallin the Kdiss value is equal to 17 µM. One subunit of native αB-crystallin contains two non-equivalent Cu2+-binding sites. The corresponding microscopic dissociation constants for Cu2+–αB-crystallin complexes (K1 and K2) were found to be equal to 0.94 and 36 µM. For peroxynitrite modified αB-crystallin the K1 and K2 values are equal to 4.3 and 70 µM, respectively.

]]>
<![CDATA[Whole genome sequencing data of Escherichia coli isolated from bloodstream infection patients in Cipto Mangunkusumo National Hospital, Jakarta, Indonesia]]> https://www.researchpad.co/product?articleinfo=N6fa874a6-425d-4db7-a898-e947a595746a

Bloodstream infections (BSIs) are some of the most devastating preventable complications in critical care units. Of the bacterial causes of BSIs, Escherichia coli is the most common among Enterobacteriaceae. Bacteria resistant to therapeutic antibiotics represent a significant global health challenge. In this study, we present whole genome sequence data of 22 E. coli isolates that were obtained from bloodstream infection patients admitted to Cipto Mangunkusumo National Hospital, Jakarta, Indonesia. These data will be useful for analysing the serotypes, virulence genes, and antimicrobial resistance genes of E. coli. DNA sequences of E. coli were obtained using the Illumina MiSeq platform. The FASTQ raw files of these sequences are available under BioProject accession number PRJNA596854 and Sequence Read Archive accession numbers SRR10761126–SRR10761147.

]]>
<![CDATA[Impact of Ice Slurry Ingestion During Break-Times on Repeated-Sprint Exercise in the Heat]]> https://www.researchpad.co/product?articleinfo=N4803c751-34ee-4b32-b63e-5a1f5e8c6b04

The study aimed to investigate the effects of ice slurry ingestion during break times and half-time (HT) on repeated-sprint performance and core temperature in the heat. Seven males performed two different trials as follows: ice slurry (−1°C) or room temperature water ingestion at each break and HT break at 36.5°C, 50% relative humidity. Participants performed 30 sets of 1-min periods of repeated- sprint exercises protocol using a cycling ergometer. Each period consisted of 5 sec of maximal pedaling, 25 sec of pedaling with no workload, and 30 sec of rest; two sets of exercise periods were separated by 10 min of rest. Each break was implemented for 1 min after every 5 sets. The rectal temperature in ice slurry ingestion was significantly lower than that of the room temperature water at 45 set (p=0.04). Total and mean work done was greater in ice slurry ingestion compared to room temperature water ingestion (p < 0.05). These results suggested that ice slurry ingestion during break times and HT break may be an effective cooling strategy to attenuate the rise of core temperature in the second half of exercise and improve the repeated-sprint exercise capacity in the heat.

]]>
<![CDATA[Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application]]> https://www.researchpad.co/product?articleinfo=N5b151d82-6b14-4a7f-beb8-82f649a56498

Heat stress is one of the major abiotic stresses that impair plant growth and crop productivity. Plant growth-promoting endophytic bacteria (PGPEB) and humic acid (HA) are used as bio-stimulants and ecofriendly approaches to improve agriculture crop production and counteract the negative effects of heat stress. Current study aimed to analyze the effect of thermotolerant SA1 an isolate of Bacillus cereus and HA on tomato seedlings. The results showed that combine application of SA1+HA significantly improved the biomass and chlorophyll fluorescence of tomato plants under normal and heat stress conditions. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA) content; however, combined application of SA1+HA markedly reduced ABA and increased SA. Antioxidant enzymes activities revealed that SA1 and HA treated plants exhibited increased levels of ascorbate peroxidase (APX), superoxide dismutase (SOD), and reduced glutathione (GSH). In addition, heat stress markedly reduced the amino acid contents; however, the amino acids were increased with co-application of SA1+HA. Similarly, inductively-coupled plasma mass-spectrometry results showed that plants treated with SA1+HA exhibited significantly higher iron (Fe+), phosphorus (P), and potassium (K+) uptake during heat stress. Heat stress increased the relative expression of SlWRKY33b and autophagy-related (SlATG5) genes, whereas co-application of SA1+HA augmented the heat stress response and reduced SlWRKY33b and SlATG5 expression. The heat stress-responsive transcription factor (SlHsfA1a) and high-affinity potassium transporter (SlHKT1) were upregulated in SA1+HA-treated plants. In conclusion, current findings suggest that co-application with SA1+HA can be used for the mitigation of heat stress damage in tomato plants and can be commercialized as a biofertilizer.

]]>
<![CDATA[Enhancing flavonoid production by promiscuous activity of prenyltransferase, BrPT2 from Boesenbergia rotunda]]> https://www.researchpad.co/product?articleinfo=N7adc3fc8-502e-4a64-99a2-eacda43411c6

Flavonoids and prenylated flavonoids are active components in medicinal plant extracts which exhibit beneficial effects on human health. Prenylated flavonoids consist of a flavonoid core with a prenyl group attached to it. This prenylation process is catalyzed by prenyltranferases (PTs). At present, only a few flavonoid-related PT genes have been identified. In this study, we aimed to investigate the roles of PT in flavonoid production. We isolated a putative PT gene (designated as BrPT2) from a medicinal ginger, Boesenbergia rotunda. The deduced protein sequence shared highest gene sequence homology (81%) with the predicted homogentisate phytyltransferase 2 chloroplastic isoform X1 from Musa acuminata subsp. Malaccensis. We then cloned the BrPT2 into pRI vector and expressed in B. rotunda cell suspension cultures via Agrobacterium-mediated transformation. The BrPT2-expressing cells were fed with substrate, pinostrobin chalcone, and their products were analyzed by liquid chromatography mass spectrometry. We found that the amount of flavonoids, namely alpinetin, pinostrobin, naringenin and pinocembrin, in BrPT2-expressing cells was higher than those obtained from the wild type cells. However, we were unable to detect any targeted prenylated flavonoids. Further in-vitro assay revealed that the reaction containing the BrPT2 protein produced the highest accumulation of pinostrobin from the substrate pinostrobin chalcone compared to the reaction without BrPT2 protein, suggesting that BrPT2 was able to accelerate the enzymatic reaction. The finding of this study implied that the isolated BrPT2 may not be involved in the prenylation of pinostrobin chalcone but resulted in high yield and production of other flavonoids, which is likely related to enzyme promiscuous activities.

]]>
<![CDATA[A single power stroke by ATP binding drives substrate translocation in a heterodimeric ABC transporter]]> https://www.researchpad.co/product?articleinfo=N31301349-16ac-43e0-9228-476ce24b03ef

ATP-binding cassette (ABC) transporters constitute the largest family of primary active transporters, responsible for many physiological processes and human maladies. However, the mechanism how chemical energy of ATP facilitates translocation of chemically diverse compounds across membranes is poorly understood. Here, we advance the quantitative mechanistic understanding of the heterodimeric ABC transporter TmrAB, a functional homolog of the transporter associated with antigen processing (TAP) by single-turnover analyses at single-liposome resolution. We reveal that a single conformational switch by ATP binding drives unidirectional substrate translocation. After this power stroke, ATP hydrolysis and phosphate release launch the return to the resting state, which facilitates nucleotide exchange and a new round of substrate binding and translocation. In contrast to hitherto existing steady-state assays, our single-turnover approach uncovers the power stroke in substrate translocation and the tight chemomechanical coupling in these molecular machines.

]]>
<![CDATA[Vip1 is a kinase and pyrophosphatase switch that regulates inositol diphosphate signaling]]> https://www.researchpad.co/product?articleinfo=Nd04d9fc2-a864-4158-9156-bedee43244a3

Significance

Our studies demonstrate that Vip1 represents a rare class of bifunctional enzyme capable of synthesizing and destroying signaling molecules important for nutrient adaptation, cellular architecture, and organelle morphology. We find that Vip1 contains two tethered autonomous catalytic active sites, which modulate levels of 1-IP7 and 1,5-IP8 through 1-kinase and 1-pyrophosphatase domains. Each activity is critical for maintaining the highly dynamic anabolic and catabolic regulation of cellular pools of IP7 and IP8. That this occurs through a single gene product emphasizes that Vip1 is a key metabolic switch critical for cellular adaptation.

]]>
<![CDATA[Rcf2 revealed in cryo-EM structures of hypoxic isoforms of mature mitochondrial III-IV supercomplexes]]> https://www.researchpad.co/product?articleinfo=Na42cde90-4275-4a05-8e54-55745c7be6e3

Significance

As the terminal electron acceptor of our mitochondrial respiratory chains, complex IV drives and regulates oxidative phosphorylation, the process by which most of our ATP is produced. Complex IV forms supercomplexes (SCs) of different stoichiometries with other respiratory proteins, interacting via its subunits with tissue-specific or oxygen level-dependent expression isoforms, suggesting a link between SC assembly and metabolic/disease state. We investigated the effect of complex IV subunit isoform exchange in yeast using cryo-EM and biochemical assays and found no significant differences in overall SC formation, architecture, or catalytic activities. However, our structural work unexpectedly revealed the presence of a Hig1 protein which we propose is a stoichiometric subunit of complex IV, at least when within a SC with complex III.

]]>
<![CDATA[Transient expression and purification of β-caryophyllene synthase in Nicotiana benthamiana to produce β-caryophyllene in vitro]]> https://www.researchpad.co/product?articleinfo=Nc2169696-659d-42ae-9d3d-d108e0c26eb0

The sesquiterpene β-caryophyllene is an ubiquitous component in many plants that has commercially been used as an aroma in cosmetics and perfumes. Recent studies have shown its potential use as a therapeutic agent and biofuel. Currently, β-caryophyllene is isolated from large amounts of plant material. Molecular farming based on the Nicotiana benthamiana transient expression system may be used for a more sustainable production of β-caryophyllene. In this study, a full-length cDNA of a new duplicated β-caryophyllene synthase from Artemisia annua (AaCPS1) was isolated and functionally characterized. In order to produce β-caryophyllene in vitro, the AaCPS1 was cloned into a plant viral-based vector pEAQ-HT. Subsequently, the plasmid was transferred into the Agrobacterium and agroinfiltrated into N. benthamiana leaves. The AaCPS1 expression was analyzed by quantitative PCR at different time points after agroinfiltration. The highest level of transcripts was observed at 9 days post infiltration (dpi). The AaCPS1 protein was extracted from the leaves at 9 dpi and purified by cobalt–nitrilotriacetate (Co-NTA) affinity chromatography using histidine tag with a yield of 89 mg kg−1 fresh weight of leaves. The protein expression of AaCPS1 was also confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses. AaCPS1 protein uses farnesyl diphosphate (FPP) as a substrate to produce β-caryophyllene. Product identification and determination of the activity of purified AaCPS1 were done by gas chromatography–mass spectrometry (GC–MS). GC–MS results revealed that the AaCPS1 produced maximum 26.5 ± 1 mg of β-caryophyllene per kilogram fresh weight of leaves after assaying with FPP for 6 h. Using AaCPS1 as a proof of concept, we demonstrate that N. benthamiana can be considered as an expression system for production of plant proteins that catalyze the formation of valuable chemicals for industrial applications.

]]>
<![CDATA[A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria]]> https://www.researchpad.co/product?articleinfo=N3c240945-18cb-4c51-94cc-0f62213cf780

Significance

We present a comprehensive investigation of mitochondrial DNA-encoded variants of cytochrome c oxidase (CcO) that harbor mutations within their core catalytic subunit I, designed to interrogate the presently disputed functions of the three putative proton channels. We assess overall respiratory competence, specific CcO catalytic activity, and, most importantly, proton/electron (H+/e) stoichiometry from adenosine diphosphate to oxygen ratio measurements on preparations of intact mitochondria. We unequivocally show that yeast mitochondrial CcO uses the D-channel to translocate protons across its hydrophilic core, providing direct evidence in support of a common proton pumping mechanism across all members of the A-type heme-copper oxidase superfamily, independent of their bacterial or mitochondrial origin.

]]>
<![CDATA[Data on protein changes of chick vitreous during normal eye growth using data-independent acquisition (SWATH-MS)]]> https://www.researchpad.co/product?articleinfo=Ncf19086a-57b8-4a37-91c3-da4ead271845

Myopia is the most common refractive error which is estimated to affect half the population of the world by 2050. It has been suggested that it could be determined by multiple factors such as environmental and genetic, but the mechanism behind the cause of myopia is still yet to be identified. Vitreous humor (VH) is a transparent gelatin-like substance that takes up to 80% of the volume of the eye, making it the largest component of the eye. Although VH is the main contributor to axial elongation of the eye including normal eye growth (emmetropization) and myopia, the diluted nature of VH (made up of 99% of water) made it difficult for less abundant molecules to be identified and therefore often overlooked. Using the more sensitive label-free mass spectrometry approach with data-independent acquisition (SWATH-MS), we established a comprehensive VH proteome library in chick animal model and quantified possible protein biomarkers that are responsible for the axial elongation during emmetropization (7, 14, 21, 28 days after hatching, n = 48 eyes). Raw data files for both information-dependent acquisition (IDA) and data-independent acquisition (SWATH-MS) were uploaded on PeptideAtlas for public access (http://www.peptideatlas.org/PASS/PASS01258).

]]>
<![CDATA[An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase]]> https://www.researchpad.co/product?articleinfo=Ncd42254c-3af2-4a5a-9396-97976f44218e

H3K9 methylation (H3K9me) specifies the establishment and maintenance of transcriptionally silent epigenetic states or heterochromatin. The enzymatic erasure of histone modifications is widely assumed to be the primary mechanism that reverses epigenetic silencing. Here, we reveal an inversion of this paradigm where a putative histone demethylase Epe1 in fission yeast, has a non-enzymatic function that opposes heterochromatin assembly. Mutations within the putative catalytic JmjC domain of Epe1 disrupt its interaction with Swi6HP1 suggesting that this domain might have other functions besides enzymatic activity. The C-terminus of Epe1 directly interacts with Swi6HP1, and H3K9 methylation stimulates this protein-protein interaction in vitro and in vivo. Expressing the Epe1 C-terminus is sufficient to disrupt heterochromatin by outcompeting the histone deacetylase, Clr3 from sites of heterochromatin formation. Our results underscore how histone modifying proteins that resemble enzymes have non-catalytic functions that regulate the assembly of epigenetic complexes in cells.

]]>
<![CDATA[Single molecule mRNA fluorescent in situ hybridization combined with immunofluorescence in S. cerevisiae: Dataset and quantification]]> https://www.researchpad.co/product?articleinfo=Nbd1abe29-312e-47a3-8cb2-770be371b467

Single-molecule fluorescent in situ hybridization (smFISH) has emerged as a powerful technique that allows one to localize and quantify the absolute number of mRNAs in single cells. In combination with immunofluorescence (IF), smFISH can be used to correlate the expression of an mRNA and a protein of interest in single cells. Here, we provide and quantify an smFISH-IF dataset in S. cerevisiae. We measured the expression of the cell cycle-controlled mRNA CLN2 and the cell cycle marker alpha-tubulin. The smFISH-IF protocol describing the dataset generation is published in the accompanying article “Simultaneous detection of mRNA and protein in S. cerevisiae by single-molecule FISH and Immunofluorescence” [1]. Here, we analyze the smFISH data using the freely available software FISH-quant [2]. The provided datasets are intended to assist scientists interested in setting up smFISH-IF protocol in their laboratory. Furthermore, scientists interested in the generation of imaging analysis tools for single-cell approaches may find the provided dataset useful. To this end, we provide the differential interference contrast (DIC) channel, as well as multicolor, raw Z-stacks for smFISH, IF and DAPI.

]]>
<![CDATA[Proteomic analysis and interactions network in leaves of mycorrhizal and nonmycorrhizal sorghum plants under water deficit]]> https://www.researchpad.co/product?articleinfo=N49ee0cea-a3b9-421b-ade8-3b9313104947

For understanding the water deficit stress mechanism in sorghum, we conducted a physiological and proteomic analysis in the leaves of Sorghum bicolor L. Moench (a drought tolerant crop model) of non-colonized and colonized plants with a consortium of arbuscular mycorrhizal fungi. Physiological results indicate that mycorrhizal fungi association enhances growth and photosynthesis in plants, under normal and water deficit conditions. 2D-electrophoresis profiles revealed 51 differentially accumulated proteins in response to water deficit, of which HPLC/MS successfully identified 49. Bioinformatics analysis of protein–protein interactions revealed the participation of different metabolic pathways in nonmycorrhizal compared to mycorrhizal sorghum plants under water deficit. In noninoculated plants, the altered proteins are related to protein synthesis and folding (50S ribosomal protein L1, 30S ribosomal protein S10, Nascent polypeptide-associated complex subunit alpha), coupled with multiple signal transduction pathways, guanine nucleotide-binding beta subunit (Rack1) and peptidyl-prolyl-cis-trans isomerase (ROC4). In contrast, in mycorrhizal plants, proteins related to energy metabolism (ATP synthase-24kDa, ATP synthase β), carbon metabolism (malate dehydrogenase, triosephosphate isomerase, sucrose-phosphatase), oxidative phosphorylation (mitochondrial-processing peptidase) and sulfur metabolism (thiosulfate/3-mercaptopyruvate sulfurtransferase) were found. Our results provide a set of proteins of different metabolic pathways involved in water deficit produced by sorghum plants alone or associated with a consortium of arbuscular mycorrhizal fungi isolated from the tropical rain forest Los Tuxtlas Veracruz, México.

]]>
<![CDATA[Identification and in silico structural and functional analysis of a trypsin-like protease from shrimp Macrobrachium carcinus]]> https://www.researchpad.co/product?articleinfo=N038b31b7-fb61-4fc5-b60b-05fe7eb50f45

Macrobrachium carcinus (Linnaeus, 1758) is a species of freshwater shrimp widely distributed from Florida southwards to southern Brazil, including southeast of Mexico. In the present work, we identified a putative trypsin-like protease cDNA fragment of 736 nucleotides from M. carcinus hepatopancreas tissue by the 3′RACE technique and compared the deduced amino acid sequence to other trypsin-related proteases to describe its structure and function relationship. The bioinformatics analyses showed that the deduced amino acid sequence likely corresponds to a trypsin-like protease closely related to brachyurins, which comprise a subset of serine proteases with collagenolytic activity found in crabs and other crustacea. The M. carcinus trypsin-like protease sequence showed a global sequence identity of 94% with an unpublished trypsin from Macrobrachium rosenbergii (GenBank accession no. AMQ98968), and only 57% with Penaeus vannamei trypsin (GenBank accession no. CAA60129). A detailed analysis of the amino acid sequence revealed specific differences with crustacean trypsins, such as the sequence motif at the beginning of the mature protein, activation mechanism of the corresponding zymogen, amino acid residues of the catalytic triad and residues responsible for substrate specificity.

]]>
<![CDATA[Multi-walled carbon nanotubes produced after forest fires improve germination and development of Eysenhardtia polystachya]]> https://www.researchpad.co/product?articleinfo=Nffb858f2-555c-4aeb-9da9-9dea1974e198

Background

Multi-walled carbon nanotubes (MWCNTs) are nanoparticles with countless applications. MWCNTs are typically of synthetic origin. However, recently, the formation of MWCNTs in nature after forest fires has been documented. Previous reports have demonstrated the positive effects of synthetic MWCNTs on the germination and development of species of agronomic interest; nevertheless, there is practically no information on how synthetic or natural MWCNTs affect forest plant development. In this report, based on insights from dose-response assays, we elucidate the comparative effects of synthetic MWCNTs, amorphous carbon, and natural MWCNTs obtained after a forest fire on Eysenhardtia polystachya plant.

Methods

E. polystachya seeds were sown in peat moss-agrolite substrate and conserved in a shade house. Germination was recorded daily up to 17 days after sowing, and plant development (manifested in shoot and root length, stem diameter, foliar area, and root architecture parameters) was recorded 60 days after sowing.

Results

The treatments with natural MWCNTs accelerated the emergence and improved the germination of this plant, thus while untreated seeds achieve 100% of germination within 16th day, seeds supplemented with natural MWCNTs at doses of 20 µg/mL achieve the above percentage within the 4th day. Natural MWCNTs also promoted fresh and dry biomass in all applied treatments, specially at doses of 40 µg/mL where natural MWCNTs significantly promoted leaf number, root growth, and the dry and fresh weights of shoots and roots of seedlings. Seeds supplemented with doses between 20 and 40 µg/mL of amorphous carbon achieving 100% of germination within the 6th day; however, seeds supplemented either with doses of 60 µg/mL of the above carbon or with synthetic MWCNTs at all the tested concentrations could achieve at most 80 % and 70% of germination respectively within the 17 days. Finally, neither treatments added with amorphous carbon nor those added with synthetic MWCNTs, showed significant increases in the fresh and dry biomass of the tested plant. Likewise, the survival of seedlings was reduced between 10 and 20 % with 40 and 60 µg/mL of amorphous carbon, and with synthetic MWCNTs in all the doses applied was reduced at 30% of survival plants.

Conclusions

These findings indicate that MWCNTs produced by wildfire act as plant growth promoters, contributing to the germination and development of adapted to fire-prone conditions species such as E. polystachya.

]]>
<![CDATA[Correction: Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1]]> https://www.researchpad.co/product?articleinfo=N63d19ade-13da-4b37-a1de-55afc96d0697 ]]> <![CDATA[Reconstitution of polythioamide antibiotic backbone formation reveals unusual thiotemplated assembly strategy]]> https://www.researchpad.co/product?articleinfo=Nfaffb708-e1bc-4242-b267-9a4f377146c2

Significance

Nonribosomal peptides (NRPs) are a vast class of natural products and an important source of therapeutics. Typically, these secondary metabolites are assembled by NRP synthetases (NRPSs) that function on substrates covalently linked to the enzyme by a thioester, in a process known as thiotemplated biosynthesis. Although NRPS-independent assembly pathways are known, all are nonthiotemplated. Here we report an NRPS-independent yet thiotemplated pathway for NRP biosynthesis and demonstrate that members of the ATP-grasp and cysteine protease families form the β-peptide backbone of an antibiotic. Armed with this knowledge, we provide genomic evidence that this noncanonical assembly pathway is widespread in bacteria. Our results will inspire future genome mining efforts for the discovery of potential therapeutics that otherwise would be overlooked.

]]>
<![CDATA[Bambara groundnut soil metagenomics data]]> https://www.researchpad.co/product?articleinfo=N31f244a1-b1c4-4686-bd5e-a9b2199fe692

Metagenomics analysis was carried out on extracted DNA of Rhizospheric soil samples from Bambara groundnut. This dataset presented reports on the bacterial communities at the different growth stages of Bambara groundnut and the bulk soil. Paired-end Illumina-Miseq sequencing of 16S rRNA genes was carried on the soil samples of the bacterial community with the phyla dominated by Actinobacteria (30.1%), Proteobacteria (22%), Acidobacteria (20.9%), Bacteroides (8.4%), Chloroflex (4.5%) and Firmicutes (4.4%) in all the soil samples. Samples from the bulk soil had the least average percent phyla, while samples at seed maturity stage had the highest average percent phyla. The alpha diversity at p = 0.05 was highest at this stage compared to the others and the control. Rubrobacter was the most predominant genera, after which is Acidobacterium and Skermanella. The biodiversity profile generated from the metagenomics analysis is useful in increasing knowledge of the drought-tolerance ability of Bambara groundnut. The data generated can be used to compare bacterial diversity at different growth stages of plants.

]]>
<![CDATA[Data on the cancer risk and mortalities induced by annual background radiations at various ages in Kohgiluyeh and Boyer-Ahmad province, Iran]]> https://www.researchpad.co/product?articleinfo=N9eff0af1-e09d-4fe4-9012-b4dc71a8355a

Measurement of background radiations (BRs) as the sources of cancer risk, is important. The aim of this study was to measure the BR, as well as its cancer risk and mortalities in Kohgiluyeh and Boyer-Ahmad province (KBAp). Indoors and outdoors BRs were measured in eight cities utilizing a Geiger-Muller detector. Five main locations (north, east, west, south, and center) were chosen for measuring outdoor and indoor BRs in each city of KBAp. The BEIR VII-Phase 2 model was used to calculate the BRs induced cancer risks and mortalities of various cancer types at different ages. The average dose rates of outdoor and indoor were 136.9 ± 12.5 and 149.3 ± 19.8 nSv.h−1, respectively. The average annual effective doses (AEDs) for adults, children, and infants were 0.17, 0.19, and 0.22 mSv.y−1 due to the outdoor, and 0.73, 0.84, and 0.94 mSv.y−1 resulting from the indoor exposure, respectively. The average lifetime risk for one year BRs induced cancers was 164.8 ± 15.7 and 307.1 ± 32.3 (in 100,000 people) for new-borns male and female, in that order. This risk decreased with age and reached 11.2 ± 1.6 and 13.8 ± 1.6 (in 100,000 people) for men and women at the age of 80, respectively. The average lifetime risk of mortality due to cancers induced by annual BRs was 70.7 ± 8.3 and 113.8 ± 10.6 (incidence probability in 100,000 people) for new-borns male and female respectively. This risk decreased with age and reached 9.8 ± 1.3 and 12.2 ± 1.3 (in 100,000 people) for men and women at the age of 80 years, respectively.

]]>