ResearchPad - Biophysics https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Transferrin-Modified Osthole PEGylated Liposomes Travel the Blood-Brain Barrier and Mitigate Alzheimer’s Disease-Related Pathology in APP/PS-1 Mice]]> https://www.researchpad.co/product?articleinfo=N69d6ab98-bd8d-4010-844a-59b94990e522

Introduction

Osthole (Ost) is a coumarin compound that strengthens hippocampal neurons and neural stem cells against Aβ oligomer-induced neurotoxicity in mice, and is a potential drug for the treatment of Alzheimer's disease (AD). However, the effectiveness of the drug is limited by its solubility and bioavailability, as well as by the low permeability of the blood-brain barrier (BBB). In this study, a kind of transferrin-modified Ost liposomes (Tf-Ost-Lip) was constructed, which could improve the bioavailability and enhance brain targeting.

Methods

Tf-Ost-Lip was prepared by thin-film hydration method. The ability of liposomal formulations to translocate across BBB was investigated using in vitro BBB model. And the protective effect of Tf-Ost-Lip was evaluated in APP-SH-SY5Y cells. In addition, we performed pharmacokinetics study and brain tissue distribution analysis of liposomal formulations in vivo. We also observed the neuroprotective effect of the varying formulations in APP/PS-1 mice.

Results

In vitro studies reveal that Tf-Ost-Lip could increase the intracellular uptake of hCMEC/D3 cells and APP-SH-SY5Y cells, and increase the drug concentration across the BBB. Additionally, Tf-Ost-Lip was found to exert a protective effect on APP-SH-SY5Y cells. In vivo studies of pharmacokinetics and the Ost distribution in brain tissue indicate that Tf-Ost-Lip prolonged the cycle time in mice and increased the accumulation of Ost in the brain. Furthermore, Tf-Ost-Lip was also found to enhance the effect of Ost on the alleviation of Alzheimer’s disease-related pathology.

Conclusion

Transferrin-modified liposomes for delivery of Ost has great potential for AD treatment.

]]>
<![CDATA[Targeted Prodrug-Based Self-Assembled Nanoparticles for Cancer Therapy]]> https://www.researchpad.co/product?articleinfo=N2b0f5f7d-d5ab-49b6-9010-39c3b297e587

Background

Targeted prodrug has various applications as drug formulation for tumor therapy. Therefore, amphoteric small-molecule prodrug combined with nanoscale characteristics for the self-assembly of the nano-drug delivery system (DDS) is a highly interesting research topic.

Methods and Results

In this study, we developed a prodrug self-assembled nanoplatform, 2-glucosamine-fluorescein-5(6)-isothiocyanate-glutamic acid-paclitaxel (2DA-FITC-PTX NPs) by integration of targeted small molecule and nano-DDS with regular structure and perfect targeting ability. 2-glucosamine (DA) and paclitaxel were conjugated as the targeted ligand and anti-tumor chemotherapy drug by amino acid group. 2-DA molecular structure can enhance the targeting ability of prodrug-based 2DA-FITC-PTX NPs and prolong retention time, thereby reducing the toxicity of normal cell/tissue. The fluorescent dye FITC or near-infrared fluorescent dye ICG in prodrug-based DDS was attractive for in vivo optical imaging to study the behavior of 2DA-FITC-PTX NPs. In vitro and in vivo results proved that 2DA-FITC-PTX NPs exhibited excellent targeting ability, anticancer activity, and weak side effects.

Conclusion

This work demonstrates a new combination of nanomaterials for chemotherapy and may promote prodrug-based DDS clinical applications in the future.

]]>
<![CDATA[Enzymatic Synthesis of Ricinoleyl Hydroxamic Acid Based on Commercial Castor Oil, Cytotoxicity Properties and Application as a New Anticancer Agent]]> https://www.researchpad.co/product?articleinfo=N2ee31eb3-084a-41f9-bd1c-0b276d684b2d

Background

New anticancer agents that rely on natural/healthy, not synthetic/toxic, components are very much needed.

Methods

Ricinoleyl hydroxamic acid (RHA) was synthesized from castor oil and hydroxylamine using Lipozyme TL IM as a catalyst. To optimize the conversion, the effects of the following parameters were investigated: type of organic solvent, period of reaction, amount of enzyme, the molar ratio of reactants and temperature. The highest conversion was obtained when the reaction was carried out under the following conditions: hexane as a solvent; reaction period of 48 hours; 120 mg of Lipozyme TL IM/3 mmol oil; HA-oil ratio of 19 mmol HA/3 mmol oil; and temperature of 40°C. The cytotoxicity of the synthesized RHA was assessed using human dermal fibroblasts (HDF), and its application towards fighting cancer was assessed using melanoma and glioblastoma cancer cells over a duration of 24 and 48 hours.

Results

RHA was successfully synthesized  and it demonstrated strong anticancer activity against glioblastoma and melanoma cells at as low as a 1 µg/mL concentration while it did not demonstrate any toxicity against HDF cells.

Conclusion

This is the first report on the synthesis of RHA with great potential to be used as a new anticancer agent.

]]>
<![CDATA[Dual Receptor-Targeted and Redox-Sensitive Polymeric Micelles Self-Assembled from a Folic Acid-Hyaluronic Acid-SS-Vitamin E Succinate Polymer for Precise Cancer Therapy]]> https://www.researchpad.co/product?articleinfo=N0333ac7a-c329-4c80-b402-750b5176061b

Purpose

Poor site-specific delivery and insufficient intracellular drug release in tumors are inherent disadvantages to successful chemotherapy. In this study, an extraordinary polymeric micelle nanoplatform was designed for the efficient delivery of paclitaxel (PTX) by combining dual receptor-mediated active targeting and stimuli response to intracellular reduction potential.

Methods

The dual-targeted redox-sensitive polymer, folic acid-hyaluronic acid-SS-vitamin E succinate (FHSV), was synthesized via an amidation reaction and characterized by 1H-NMR. Then, PTX-loaded FHSV micelles (PTX/FHSV) were prepared by a dialysis method. The physiochemical properties of the micelles were explored. Moreover, in vitro cytological experiments and in vivo animal studies were carried out to evaluate the antitumor efficacy of polymeric micelles.

Results

The PTX/FHSV micelles exhibited a uniform, near-spherical morphology (148.8 ± 1.4 nm) and a high drug loading capacity (11.28% ± 0.25). Triggered by the high concentration of glutathione, PTX/FHSV micelles could quickly release their loaded drug into the release medium. The in vitro cytological evaluations showed that, compared with Taxol or single receptor-targeted micelles, FHSV micelles yielded higher cellular uptake by the dual receptor-mediated endocytosis pathway, thus leading to significantly superior cytotoxicity and apoptosis in tumor cells but less cytotoxicity in normal cells. More importantly, in the in vivo antitumor experiments, PTX/FHSV micelles exhibited enhanced tumor accumulation and produced remarkable tumor growth inhibition with minimal systemic toxicity.

Conclusion

Our results suggest that this well-designed FHSV polymer has promising potential for use as a vehicle of chemotherapeutic drugs for precise cancer therapy.

]]>
<![CDATA[A single power stroke by ATP binding drives substrate translocation in a heterodimeric ABC transporter]]> https://www.researchpad.co/product?articleinfo=N31301349-16ac-43e0-9228-476ce24b03ef

ATP-binding cassette (ABC) transporters constitute the largest family of primary active transporters, responsible for many physiological processes and human maladies. However, the mechanism how chemical energy of ATP facilitates translocation of chemically diverse compounds across membranes is poorly understood. Here, we advance the quantitative mechanistic understanding of the heterodimeric ABC transporter TmrAB, a functional homolog of the transporter associated with antigen processing (TAP) by single-turnover analyses at single-liposome resolution. We reveal that a single conformational switch by ATP binding drives unidirectional substrate translocation. After this power stroke, ATP hydrolysis and phosphate release launch the return to the resting state, which facilitates nucleotide exchange and a new round of substrate binding and translocation. In contrast to hitherto existing steady-state assays, our single-turnover approach uncovers the power stroke in substrate translocation and the tight chemomechanical coupling in these molecular machines.

]]>
<![CDATA[Top-down machine learning approach for high-throughput single-molecule analysis]]> https://www.researchpad.co/product?articleinfo=N957aad02-2c00-4587-a7f5-2b73aea07b8d

Single-molecule approaches provide enormous insight into the dynamics of biomolecules, but adequately sampling distributions of states and events often requires extensive sampling. Although emerging experimental techniques can generate such large datasets, existing analysis tools are not suitable to process the large volume of data obtained in high-throughput paradigms. Here, we present a new analysis platform (DISC) that accelerates unsupervised analysis of single-molecule trajectories. By merging model-free statistical learning with the Viterbi algorithm, DISC idealizes single-molecule trajectories up to three orders of magnitude faster with improved accuracy compared to other commonly used algorithms. Further, we demonstrate the utility of DISC algorithm to probe cooperativity between multiple binding events in the cyclic nucleotide binding domains of HCN pacemaker channel. Given the flexible and efficient nature of DISC, we anticipate it will be a powerful tool for unsupervised processing of high-throughput data across a range of single-molecule experiments.

]]>
<![CDATA[Redefining the heterogeneity of peripheral nerve cells in health and autoimmunity]]> https://www.researchpad.co/product?articleinfo=Nf11306cd-b1fa-4dea-b8f8-c518a6d7fffd

Significance

We here present a transcriptional map of peripheral nerve cells in health and autoimmunity. Identified marker genes of nonmyelinating Schwann cells and nerve-associated fibroblasts will facilitate a better understanding of the complex cellular architecture of peripheral nerves. The two distinct populations of nerve-resident homeostatic myeloid cells suggest an unexpectedly unique and heterogeneous local immune repertoire in peripheral nerves with signs of heterogeneous ontogenetic origin. Complex changes of local cell–cell communication networks indicate autoimmune neuritis as a disease affecting “immune networks” rather than single cell types. The findings also suggest that immunological features are partially shared and conserved across different parts of the nervous system.

]]>
<![CDATA[Cavitation in soft matter]]> https://www.researchpad.co/product?articleinfo=Nd0a93384-098b-4855-abf9-29f74edc2c6d

Cavitation is the sudden, unstable expansion of a void or bubble within a liquid or solid subjected to a negative hydrostatic stress. Cavitation rheology is a field emerging from the development of a suite of materials characterization, damage quantification, and therapeutic techniques that exploit the physical principles of cavitation. Cavitation rheology is inherently complex and broad in scope with wide-ranging applications in the biology, chemistry, materials, and mechanics communities. This perspective aims to drive collaboration among these communities and guide discussion by defining a common core of high-priority goals while highlighting emerging opportunities in the field of cavitation rheology. A brief overview of the mechanics and dynamics of cavitation in soft matter is presented. This overview is followed by a discussion of the overarching goals of cavitation rheology and an overview of common experimental techniques. The larger unmet needs and challenges of cavitation in soft matter are then presented alongside specific opportunities for researchers from different disciplines to contribute to the field.

]]>
<![CDATA[Limited dishevelled/Axin oligomerization determines efficiency of Wnt/β-catenin signal transduction]]> https://www.researchpad.co/product?articleinfo=N89b0a066-5932-4aa3-9c28-7c04aeecc210

In Wnt/β-catenin signaling, the transcriptional coactivator β-catenin is regulated by its phosphorylation in a complex that includes the scaffold protein Axin and associated kinases. Wnt binding to its coreceptors activates the cytosolic effector Dishevelled (Dvl), leading to the recruitment of Axin and the inhibition of β-catenin phosphorylation. This process requires interaction of homologous DIX domains present in Dvl and Axin, but is mechanistically undefined. We show that Dvl DIX forms antiparallel, double-stranded oligomers in vitro, and that Dvl in cells forms oligomers typically <10 molecules at endogenous expression levels. Axin DIX (DAX) forms small single-stranded oligomers, but its self-association is stronger than that of DIX. DAX caps the ends of DIX oligomers, such that a DIX oligomer has at most four DAX binding sites. The relative affinities and stoichiometry of the DIX-DAX interaction provide a mechanism for efficient inhibition of β-catenin phosphorylation upon Axin recruitment to the Wnt receptor complex.

]]>
<![CDATA[Single-molecule observation of ATP-independent SSB displacement by RecO in Deinococcus radiodurans]]> https://www.researchpad.co/product?articleinfo=N75dd0523-a172-49b7-a20f-e040e1226ee1

Deinococcus radiodurans (DR) survives in the presence of hundreds of double-stranded DNA (dsDNA) breaks by efficiently repairing such breaks. RecO, a protein that is essential for the extreme radioresistance of DR, is one of the major recombination mediator proteins in the RecA-loading process in the RecFOR pathway. However, how RecO participates in the RecA-loading process is still unclear. In this work, we investigated the function of drRecO using single-molecule techniques. We found that drRecO competes with the ssDNA-binding protein (drSSB) for binding to the freely exposed ssDNA, and efficiently displaces drSSB from ssDNA without consuming ATP. drRecO replaces drSSB and dissociates it completely from ssDNA even though drSSB binds to ssDNA approximately 300 times more strongly than drRecO does. We suggest that drRecO facilitates the loading of RecA onto drSSB-coated ssDNA by utilizing a small drSSB-free space on ssDNA that is generated by the fast diffusion of drSSB on ssDNA.

]]>
<![CDATA[Cryo-EM structure of the potassium-chloride cotransporter KCC4 in lipid nanodiscs]]> https://www.researchpad.co/product?articleinfo=N58103102-565b-4494-8b69-a2dcfc1a57fa

Cation-chloride-cotransporters (CCCs) catalyze transport of Cl- with K+ and/or Na+across cellular membranes. CCCs play roles in cellular volume regulation, neural development and function, audition, regulation of blood pressure, and renal function. CCCs are targets of clinically important drugs including loop diuretics and their disruption has been implicated in pathophysiology including epilepsy, hearing loss, and the genetic disorders Andermann, Gitelman, and Bartter syndromes. Here we present the structure of a CCC, the Mus musculus K+-Cl- cotransporter (KCC) KCC4, in lipid nanodiscs determined by cryo-EM. The structure, captured in an inside-open conformation, reveals the architecture of KCCs including an extracellular domain poised to regulate transport activity through an outer gate. We identify binding sites for substrate K+ and Cl- ions, demonstrate the importance of key coordinating residues for transporter activity, and provide a structural explanation for varied substrate specificity and ion transport ratio among CCCs. These results provide mechanistic insight into the function and regulation of a physiologically important transporter family.

]]>
<![CDATA[A complex IRES at the 5'-UTR of a viral mRNA assembles a functional 48S complex via an uAUG intermediate]]> https://www.researchpad.co/product?articleinfo=N9559bf81-f12f-4629-842b-6f7764d00371

Taking control of the cellular apparatus for protein production is a requirement for virus progression. To ensure this control, diverse strategies of cellular mimicry and/or ribosome hijacking have evolved. The initiation stage of translation is especially targeted as it involves multiple steps and the engagement of numerous initiation factors. The use of structured RNA sequences, called Internal Ribosomal Entry Sites (IRES), in viral RNAs is a widespread strategy for the exploitation of eukaryotic initiation. Using a combination of electron cryo-microscopy (cryo-EM) and reconstituted translation initiation assays with native components, we characterized how a novel IRES at the 5'-UTR of a viral RNA assembles a functional initiation complex via an uAUG intermediate. The IRES features a novel extended, multi-domain architecture, that circles the 40S head. The structures and accompanying functional data illustrate the importance of 5'-UTR regions in translation regulation and underline the relevance of the untapped diversity of viral IRESs.

]]>
<![CDATA[Actuation and locomotion driven by moisture in paper made with natural pollen]]> https://www.researchpad.co/product?articleinfo=N7c61da3b-030c-4768-adc6-7d172405df70

Significance

Much progress has been made in developing bioinspired sensors and actuators based on engineered synthetic materials, although there remains a critical need to incorporate cost-effective and eco-friendly materials. Here naturally abundant pollen grains are used as a material template to produce paper that sensitively and reversibly responds as an actuator to variations in environmental humidity. The actuating properties of the all-natural paper are readily tuned by material characteristics, such as sheet thickness and surface roughness. We demonstrate self-actuation of the pollen-based paper by mimicking flower blooming. The results presented here point to pathways for the creation of self-propelled robots, flexible electronics, and multifunctional devices. They also offer the potential for digital printing and fabrication of complex and programmable natural actuators.

]]>
<![CDATA[Modular repeat protein sculpting using rigid helical junctions]]> https://www.researchpad.co/product?articleinfo=N0352738b-33be-4201-a8ee-1f0322aa6e1e

Significance

The ability to robustly control macromolecular shape on the nanometer length scale is important for a wide range of biomedical and materials applications. DNA nanotechnology has achieved considerable success in building up complex structures from a small number of types of building blocks. We describe a large library of protein building blocks and junctions between them that enable the design of proteins with a wide range of shapes through modular combination of blocks rather than traditional and more complex design at the level of amino acid residues.

]]>
<![CDATA[Computational design of probes to detect bacterial genomes by multivalent binding]]> https://www.researchpad.co/product?articleinfo=Nfad6c4dc-9f1f-42ae-9627-29a71a527b72

Significance

There is a great need for simple and reliable methods to detect DNA of interest in the presence of other DNA, e.g., to detect bacterial infections in the presence of nonpathogenic bacteria. We propose that the sensitivity and selectivity of existing DNA screening methods can be enhanced by multivalent targeting of the whole bacterial genome. Unlike existing methods, our approach exploits superselectivity. We propose designing oligonucleotide probes that bind weakly but selectively to nucleotide sequences that occur with high frequency in the genome of the target bacterial pathogen. We have developed a numerical scheme to identify such target sequences and we have tested our approach in large-scale, coarse-grained simulations of the multivalent binding of entire bacterial genomes.

]]>
<![CDATA[Delta glutamate receptor conductance drives excitation of mouse dorsal raphe neurons]]> https://www.researchpad.co/product?articleinfo=Na63a858a-b4b6-4d86-8af8-22ec182ef9ae

The dorsal raphe nucleus is the predominant source of central serotonin, where neuronal activity regulates complex emotional behaviors. Action potential firing of serotonin dorsal raphe neurons is driven via α1-adrenergic receptors (α1-AR) activation. Despite this crucial role, the ion channels responsible for α1-AR-mediated depolarization are unknown. Here, we show in mouse brain slices that α1-AR-mediated excitatory synaptic transmission is mediated by the ionotropic glutamate receptor homolog cation channel, delta glutamate receptor 1 (GluD1). GluD1R-channels are constitutively active under basal conditions carrying tonic inward current and synaptic activation of α1-ARs augments tonic GluD1R-channel current. Further, loss of dorsal raphe GluD1R-channels produces an anxiogenic phenotype. Thus, GluD1R-channels are responsible for α1-AR-dependent induction of persistent pacemaker-type firing of dorsal raphe neurons and regulate dorsal raphe-related behavior. Given the widespread distribution of these channels, ion channel function of GluD1R as a regulator of neuronal excitability is proposed to be widespread in the nervous system.

]]>
<![CDATA[Same structure, different mechanisms?]]> https://www.researchpad.co/product?articleinfo=Ned7d5cd1-550e-4fc1-81cf-480a51743833

Two interpretations of similar structures for the same molecular machine illustrate the limits of inferring biochemical mechanism from protein structure.

]]>
<![CDATA[Influence of the tubular network on the characteristics of calcium transients in cardiac myocytes]]> https://www.researchpad.co/product?articleinfo=N7f446290-780e-4486-a1de-95187c6060a1

Transverse and axial tubules (TATS) are an essential ingredient of the excitation-contraction machinery that allow the effective coupling of L-type Calcium Channels (LCC) and ryanodine receptors (RyR2). They form a regular network in ventricular cells, while their presence in atrial myocytes is variable regionally and among animal species We have studied the effect of variations in the TAT network using a bidomain computational model of an atrial myocyte with variable density of tubules. At each z-line the t-tubule length is obtained from an exponential distribution, with a given mean penetration length. This gives rise to a distribution of t-tubules in the cell that is characterized by the fractional area (F.A.) occupied by the t-tubules. To obtain consistent results, we average over different realizations of the same mean penetration length. To this, in some simulations we add the effect of a network of axial tubules. Then we study global properties of calcium signaling, as well as regional heterogeneities and local properties of sparks and RyR2 openings. In agreement with recent experiments in detubulated ventricular and atrial cells, we find that detubulation reduces the calcium transient and synchronization in release. However, it does not affect sarcoplasmic reticulum (SR) load, so the decrease in SR calcium release is due to regional differences in Ca2+ release, that is restricted to the cell periphery in detubulated cells. Despite the decrease in release, the release gain is larger in detubulated cells, due to recruitment of orphaned RyR2s, i.e, those that are not confronting a cluster of LCCs. This probably provides a safeguard mechanism, allowing physiological values to be maintained upon small changes in the t-tubule density. Finally, we do not find any relevant change in spark properties between tubulated and detubulated cells, suggesting that the differences found in experiments could be due to differential properties of the RyR2s in the membrane and in the t-tubules, not incorporated in the present model. This work will help understand the effect of detubulation, that has been shown to occur in disease conditions such as heart failure (HF) in ventricular cells, or atrial fibrillation (AF) in atrial cells.

]]>
<![CDATA[A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery]]> https://www.researchpad.co/product?articleinfo=Nc90ed1fd-0433-47f8-99bd-914130e4e6c6

The ClpXP degradation machine consists of a hexameric AAA+ unfoldase (ClpX) and a pair of heptameric serine protease rings (ClpP) that unfold, translocate, and subsequently degrade client proteins. ClpXP is an important target for drug development against infectious diseases. Although structures are available for isolated ClpX and ClpP rings, it remains unknown how symmetry mismatched ClpX and ClpP work in tandem for processive substrate translocation into the ClpP proteolytic chamber. Here, we present cryo-EM structures of the substrate-bound ClpXP complex from Neisseria meningitidis at 2.3 to 3.3 Å resolution. The structures allow development of a model in which the sequential hydrolysis of ATP is coupled to motions of ClpX loops that lead to directional substrate translocation and ClpX rotation relative to ClpP. Our data add to the growing body of evidence that AAA+ molecular machines generate translocating forces by a common mechanism.

]]>
<![CDATA[Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate]]> https://www.researchpad.co/product?articleinfo=N274f4952-2de8-48eb-9cdf-d1239cceea30

ClpXP is an ATP-dependent protease in which the ClpX AAA+ motor binds, unfolds, and translocates specific protein substrates into the degradation chamber of ClpP. We present cryo-EM studies of the E. coli enzyme that show how asymmetric hexameric rings of ClpX bind symmetric heptameric rings of ClpP and interact with protein substrates. Subunits in the ClpX hexamer assume a spiral conformation and interact with two-residue segments of substrate in the axial channel, as observed for other AAA+ proteases and protein-remodeling machines. Strictly sequential models of ATP hydrolysis and a power stroke that moves two residues of the substrate per translocation step have been inferred from these structural features for other AAA+ unfoldases, but biochemical and single-molecule biophysical studies indicate that ClpXP operates by a probabilistic mechanism in which five to eight residues are translocated for each ATP hydrolyzed. We propose structure-based models that could account for the functional results.

]]>