ResearchPad - Development https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[SUN-710 Custom Panel to Diagnosis Genetic Endocrine Disorders in a Tertiary Academic Hospital]]> https://www.researchpad.co/product?articleinfo=Ne2b67ddc-9839-4830-953b-64c8b51b7188

Abstract

Next-generation sequencing (NGS) has been transforming the endocrine diagnostic methodology allowing the genetic testing to assume an exploratory role rather than only a confirmatory one. This is possible due to lower costs and increased yield of information. A way to further increase efficiency and sensitivity for variant detection is the use of a sequencing custom panel selecting specific genes for screening. In endocrine disorders, the complex and intricate genotype-phenotype relations and occurrence of diverse comorbidities made the diagnosis challenging. Our aim is to analyze the efficiency of a multigenic panel for molecular diagnosis of endocrine disorders in patients assisted in a tertiary academic hospital, as well as to train academic and medical faculties in the use of molecular tools. Genomic DNA from 282 patients was extracted from blood sample using standard procedures. Sanger method was previously used to screen some candidate genes in half of the patients. The custom panel was designed with 651 genes using the SureDesign tool (Agilent technologies), either associated with the phenotype (OMIM) or candidate genes that englobes developmental (DD), metabolic (MD), and adrenal (AD) disorders. Libraries were prepared with SureSelectXT Target Enrichment kit (Agilent Technologies). The enriched DNA libraries were sequenced in NextSeq 500 (Illumina) with High Output V2 kit (2 x 150 bp). The raw data was aligned to hg19 with BWA-MEM, variant calling was performed using FreeBayes and annotated with ANNOVAR. Filtering took into consideration the rarity (≤1%) of variants in population databases and those in exonic or splice site regions. Variants found were then classified according ACMG/AMP criteria. The categories of Pathogenic (P) and Likely Pathogenic (LP) were considered for molecular diagnosis, while variants of uncertain significance (VUS) were only reported. The average result of 3 runs was: 159Kmm2 of cluster density, 76.5 % of Q30 and 76.6 Gb of data were generated. The mean coverage depth of the targeted regions in panel sequencing data was 237x (SD±110x), with at least 96.3% of the sequenced bases being covered more than 20-fold. Out of the 282 patients, we identified 65 LP/P variants (23%), 22 VUS (8%) and 195 remained undiagnosed (69%). Considering the solved cases, 54 (19.1%) have DD, 6 (2.1%) have MD and 5 (1.8%) have AD. Taking into account that half of the patients had already been previously screened, the data enable new findings in known genes. The application of a multigenic panel aids the training of medical faculty in an academic hospital by showing the big picture of the molecular pathways behind each disorder. This may be particularly helpful considering the higher diagnosis of DD cases. A precise genetic etiology provides improvement in understanding the disease, guides decisions about prevention or treatment, and brings comfort to the affected families.

]]>
<![CDATA[SAT-713 Novel Estrogenic Gene Regulation Induced by OTC Medications Containing Paraben Preservatives Is Dependent on Concentration that Varies Between Products and Batches]]> https://www.researchpad.co/product?articleinfo=N851118cc-507a-4a7f-a023-b3dd872905ce

Abstract

Methylparaben, ethylparaben, and propylparaben are widely used as preservatives in food products, cosmetics, and pharmaceuticals. Parabens have been shown to be weak estrogens and this laboratory has described that extracts of some over the counter (OTC) medications with paraben preservatives can induce estrogen activity in tissue culture-based bioassays. At the same time, this laboratory determined that extracts from OTC medications containing the laxative bisacodyl induce estrogen activity regardless of parabens present and that bisacodyl is estrogenic. The current report describes the use of paraben standards and LC-MS analysis to determine paraben concentrations in extracts from OTC medications (Calcium Carbonate, Bisacodyl, Ibuprofen, Diphenhydramine, and Benzoyl Peroxide) used in previous studies. Also described is the application of the Qiagen RT2 Profiler PCR Array for Human Estrogen Receptor Signalling to determine gene induction profiles in MCF-7 cells treated with methyl, ethyl or proplyparaben, or each of the five pairs of OTC medication extracts (with or without parabens) relative to estradiol treatment. LC-MS analysis of extracts confirmed that five of six OTC medications labeled as paraben-free contain no detectable parabens, while one “paraben free” extract included measurable levels of parabens. At the same time, all of the extracts of OTC medications with paraben ingredients, some of which induce estrogen activity, were found to contain a wide range of paraben concentrations. A threshold range of paraben concentration in OTC medications is required to induce estrogen activity in bioassays. Analysis of paraben concentrations of extracts from different product lots of the same OTC medication identified discrepancies in the amount of paraben between batches. PCR Array profiles of the three paraben standards and the OTC medication extracts share some gene induction characteristics induced by estradiol. At the same time, methyl, ethyl and propylparabens induced unique gene array profiles that are shared by the OTC medication extracts containing parabens. The extracts of OTC medications containing bisacodyl stimulated a distinct gene induction profile that has some features of the profiles of estradiol and paraben treatment. This study highlights both the capacity for paraben preservatives in OTC medications to induce novel estrogen activity (gene induction) and the importance of determining the paraben concentration in OTC medications to determine estrogen potential. While the capacity for OTC medications containing parabens or other estrogenic substances to induce estrogen activity in individuals using the medications is unclear, consumers may want to know the potential for estrogen activity in these products.

]]>
<![CDATA[SAT-286 TSH Synthesis and Secretion Are Unperturbed in Male IRS4 Knockout Mice]]> https://www.researchpad.co/product?articleinfo=N91de1daf-f4ba-4e10-8cb0-6f0bfef49015

Abstract

It was recently reported that mutations in the insulin receptor substrate 4 (IRS4) gene cause a novel form of X-linked congenital central hypothyroidism (OMIM 300904). To date, four different mutations, three frameshift and one nonsense, have been reported, with two affected male patients showing decreased basal, pulsatile, and total thyroid-stimulation hormone (TSH) secretion (PMID 30061370).

Members of the IRS family canonically act as scaffold proteins between tyrosine kinase receptors and their downstream effectors. IRS4/Irs4 expression is enriched in the pituitary; however, its role in the hypothalamic-pituitary-thyroid (HPT) axis has not been studied in detail.

We generated novel whole-body Irs4-knockout mouse lines using CRISPR-Cas9. A specific guide RNA was used to target the Cas9 enzyme to the 5’ end of the single exon Irs4 gene. A two-nucleotide deletion was introduced into Irs4, resulting in a frameshift and premature stop codon. We hypothesized that like IRS4 deficient patients, these mice would exhibit central hypothyroidism. Given that Irs4 is X-linked, we focused our initial characterization on males.

Under normal laboratory conditions, Irs4 knockout mice do not exhibit differences in pituitary expression of Tshb, which encodes one of the subunits of the TSH heterodimer. Expression of the gene encoding the thyrotropin-releasing hormone (TRH) receptor, Trhr1, is also unperturbed in these knockout mice. Additionally, there are no differences in their serum thyroid hormones, T3 (triiodothyronine) and T4 (thyroxine). When Irs4 knockout males were placed on a low-iodine diet supplemented with propylthiouracil (PTU) for 3 weeks and rendered hypothyroid, their serum TSH increased similarly to wild-type males. Overall, Irs4 knockout males do not exhibit central hypothyroidism or phenocopy IRS4 deficient patients. Compensation by another IRS protein may explain euthyroidism in these mice.

]]>
<![CDATA[MON-721 Crude Protein of Pyropia Yezoensis Protects Against Tumor Necrosis Factor-á-Induced Myotube Atrophy by Regulating the Mitogen-Activated Protein Kinase and Nuclear Factor-Kappab Signaling Pathways in C2C12 Myotubes]]> https://www.researchpad.co/product?articleinfo=Nc3630d68-d818-4448-afec-e32419d50588

Abstract

Proinflammatory cytokines induce ubiquitin-proteasome-dependent proteolysis by activating intracellular factors in skeletal muscle, leading to muscle atrophy. Therefore, we investigated the protective effect of Pyropia yezoensis crude protein (PYCP) on tumor necrosis factor (TNF)-α-induced muscle atrophy in vitro. Mouse skeletal muscle C2C12 myotubes were treated for 48 h with TNF-α (20 ng/mL) in the presence or absence of PYCP (25, 50, and 100 μg/mL). PYCP at concentrations up to 100 μg/mL did not affect cell viability. Exposure to TNF-α for 48 h significantly decreased the diameter of myotubes, which was increased by treatment with 25, 50, and 100 μg/mL PYCP. PYCP inhibited TNF-α-induced intracellular reactive oxygen species accumulation in C2C12 myotubes. In addition, PYCP significantly reduced the levels of phosphorylated p38 and JNK. Moreover, by inhibiting the degradation of inhibitor of kappaB-α, PYCP significantly suppressed the TNF-α-induced increased transcriptional activity and nuclear translocation of nuclear factor-kappaB (NF-κB). Furthermore, PYCP inhibited E3-ubiquitin ligases in TNF-α-treated C2C12 myotubes. In conclusion, PYCP ameliorated TNF-α-induced muscle atrophy by inhibiting the mitogen-activated protein kinase-mediated NF-κB pathway, indicating that it has therapeutic potential for related disorders.

]]>
<![CDATA[SAT-717 Region-Specific Effects of the Exposome on Brain Monoamine Levels in Female Rats]]> https://www.researchpad.co/product?articleinfo=Ne7e31761-4e37-42f9-acc0-06bb1f247029

Abstract

Prenatal programming with endocrine disrupting chemicals (EDCs), in particular the ubiquitous plasticizers bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP), can induce long-lasting behavioral changes in rats. Additionally, changes in estrogen are correlated with the development of mood disorders in women; however, the underlying neurobiological mechanisms are unclear. This study was conducted to determine the cumulative effects of prenatal exposure to EDCs followed by chronic estradiol treatment in adult female rats on monoamine levels in the prefrontal cortex (PFC) and hippocampus (HC). Dams were orally administered saline (control; 10 µL/kg), BPA (B; 5 µg/kg), DEHP (D; 7.5 mg/kg) or a combination of BPA+DEHP (B+D) during days 6 through 21 of pregnancy. Adult female offspring were sham-implanted or implanted with pellets that release 17β-estradiol (E2) for 90 days (20 ng/day; Innovative Research America). The offspring then underwent a battery of behavioral tests at the end of treatment. Brains collected from the offspring were sectioned and the PFC and HC were microdissected and analyzed for levels of norepinephrine (NE), dopamine (DA) and serotonin (5-HT), using High-Performance Liquid Chromatography (HPLC). Significant reductions in monoamine levels were observed in the PFC while NE and 5-HT levels were markedly reduced in the HC after prenatal exposure to D or BD. BPA’s effects on monoamines were comparatively modest. E2 exposure increased DA but decreased 5-HT levels in the PFC of control animals. Prenatal exposure to EDCs made the offspring non-responsive to E2. The marked reduction in monoamine levels could have implications for learning and memory.

]]>
<![CDATA[SAT-281 Chronic, Excess Growth Hormone Action Alters the Development and Aging of the Microbial Community in the Mouse Gut]]> https://www.researchpad.co/product?articleinfo=Nae305fdb-513f-4fc5-8297-077b62097e78

Abstract

Emerging evidence proposes that the gut microbiome has an vital role in host growth, metabolism and endocrinology. That is, gut microbes impact growth by potentially altering the growth hormone (GH)/insulin-like growth factor-1 axis. Our previous research has also shown that GH - in states of absence and excess - is associated with altered gut microbial composition, maturity and predictive metabolic function in mice. Moreover, both GH and the gut microbiome are implicated in development and aging. Yet, it is unknown how GH impacts the longitudinal microbiome. This study thus aimed to characterize the longitudinal changes in the gut microbial profile of bovine GH transgenic mice (a model of chronic, excess GH action and accelerated aging). Microbial composition was quantified from fecal pellets of the same bGH and control mice at 3, 6 and 12 months of age through 16S rRNA gene sequencing and QIIME 2. Additional bioinformatic analyses assessed the unique signature and predictive metabolic function of the microbiome. The bGH mice had a distinct microbial profile compared to controls longitudinally. At 3 months, bGH mice had increased Firmicutes and Actinobacteria, decreased Bacteroidetes, Proteobacteria and Campylobacterota, and a significant reduction in microbial richness and evenness. By 6 months, all of the aforesaid phyla were increased with the exception of Firmicutes. By 12 months, bGH mice exhibited dysbiosis with increased Firmicutes and Proteobacteria and reduced Bacteroidetes, microbial richness and evenness. Moreover, abundance in Firmicutes, Bacteroidetes and Campylobacterota were significantly explained by the combined effect of genotype and age (p = 0.006, 0.005 and 0.02, respectively). Across all timepoints, bGH mice had a significantly different microbiome compared to controls (p = 0.002), and the development of microbial richness and evenness were also significantly different in bGH mice (p = 0.034 and 0.023). Bacterial genera Lactobacillus, Ruminococcaceae and Lachnospiraceae were identified as a unique candidates in bGH mice across all timepoints. Likewise, metabolic pathways involved in biosynthesis of heme b, menaquinol, acetate and butyrate differentiated the longitudinal bGH microbiome. Collectively, these results show that chronic, excess GH impacts the development and aging of the gut microbiome. Notably, several of the stated bacterial genera and metabolic pathways were associated with GH in our previous study, suggesting that GH may influence the longitudinal presence of certain gut microbes and metabolic functions. Additional studies will be performed to further explore the GH-associated gut microbiome and its impact on host health. Research was partially funded by the John J. Kopchick MCB/TBS Fellowship, a fellowship from the Osteopathic Heritage Foundation and the MMPC at UC, Davis (NIH grant U240DK092993).

]]>
<![CDATA[OR24-07 Fetal Sex Impacts First Trimester Maternal-Fetal Communication in Humans]]> https://www.researchpad.co/product?articleinfo=N4571ee7c-dd60-4175-a5a5-c9aa3de2730b

Abstract

The placenta serves as a regulator of fetal growth throughout pregnancy. Signaling at the maternal-fetal interface is critical during placentation and lays the groundwork for placenta function, affecting pregnancy outcomes. Fetal growth is impacted by fetal sex, with males larger than females, and maternal gestational diabetes and obesity independently increase the risk of macrosomia in male fetuses only. We previously demonstrated differentially expressed genes (DEGs) among sexes involves ancient canonical pathways and metabolic functions in placenta tissue. As these are likely impacted by signaling at the maternal-fetal interface, our aim here was to identify sex differences in signaling at the maternal-fetal interface and among individual cell types within the placenta to explain these differences. RNA-sequencing of first trimester placenta and maternal decidua as well as single cell RNA-sequencing in first trimester placenta was performed in ongoing pregnancies. We identified 91 sexually dimorphic receptor-ligand pairs across the maternal-fetal interface. From these, 35 of 115 receptors and/or ligand genes were also found to be upstream regulators of pathways critical in sexually dimorphic placentation which may define regulation. Single cell analysis identified five major cell types (trophoblasts, stromal cells, hofbauer cells, antigen presenting cells, and endothelial cells), and all had sexually dimorphic genes. Among individual cell types, ligands from the CC-family of cytokines were most highly representative in females, with their corresponding receptors present on the maternal surface. Furthermore, upstream regulator analysis of sexually dimorphic genes demonstrated TGFβ1 and estradiol to significantly affect all cell types. Dihydrotestosterone, which is produced by the male fetus, was an upstream regulator that was most significant for the trophoblast population. In addition, gene ontology enrichment analysis identified distinctive enriched functions between male and female trophoblasts, with cytokine mediated signaling pathways most representative. MUC15 and NOTUM were the most highly expressed sexually dimorphic autosomal genes found in distinct cell types of the trophoblast population, cell types critical for placentation and nutrient exchange. Thus, differences in hormone and immune signaling pathways may account for differential gene expression and differences in trophoblast function during placentation, which may in turn explain developmental differences, including fetal size, well-being, and overall outcomes.

]]>
<![CDATA[MON-040 11-Oxygenated C19 Steroids in Polycystic Ovarian Syndrome]]> https://www.researchpad.co/product?articleinfo=Nbe87622f-9254-4921-b08f-c9f2800bdab3

Abstract

BACKGROUND: Polycystic ovarian syndrome (PCOS), an endocrine and reproductive disorder consisting of hyperandrogenism, menstrual dysfunction and ovarian changes, affects 6–20% of reproductive aged women worldwide. While hyperandrogenemia is traditionally determined by evidence of elevated testosterone (T), this hormone can be difficult to accurately measure in women with relatively lower circulating levels compared to men. Recent studies have suggested that four adrenal androgens known as 11-oxygenated C19 steroids (11OxyAs), specifically 11-ketotestosterone (11KT), may be good alternative markers for hyperandrogenism in PCOS. Using a multiethnic population seeking evaluation for PCOS symptomatology, we sought (1) to investigate the utility of 11OxyAs to differentiate women with and without NIH PCOS relative to classical androgens such as T, androstenedione (A4) and DHEAS levels, and (2) to evaluate the relationship of 11OxyAs to clinical findings of androgen excess.

Methods: Using the University of California, San Francisco PCOS Tissue Bank, serum samples from 131 women seen for a PCOS evaluation were selected sequentially and identified as PCOS or non-PCOS (controls) based on meeting NIH criteria at the time of evaluation. In addition to obtaining gonadotropin and metabolic profiles, classical androgens and 11OxyAs were measured using mass spectrometry. The relationship of these androgens to modified Ferriman-Gallwey (mFG) scores and ovarian morphology were also assessed.

Results: Out of 131 women selected, 83 met NIH PCOS criteria at the time of evaluation and 48 did not (controls). Age and BMI did not differ among the two groups. As expected, total T, A4 and LH were all significantly higher in NIH PCOS. A trend towards higher HOMA-IR levels was also seen in NIH PCOS, but this did not reach statistical significance (3±3.9 mg/dL vs. 1.9±1.7 mg/dL, p = 0.12). No difference was seen in all four 11OxyAs between NIH PCOS and controls. Unlike previous studies, we also did not find mean 11KT levels to exceed that of T in both controls (T 393±143 pg/mL vs. 11KT 389±206 pg/mL) and PCOS (T 530±245 pg/mL vs. 11KT 388±201 pg/mL). In addition, no relationship was seen between HOMA-IR and 11β-hydroxyandrostenedione (11OHA4) or 11-ketoandrostenedione (11KA4) levels. Within PCOS, DHEAS and A4 were noted to have a weak but inverse relationship to BMI (r2 0.05 p = 0.05; r2 0.08 p = 0.007), whereas no correlation was seen between any of the four 11OxyAs or T and BMI. Lastly, 11OxyAs, T, and A4 levels did not predict mFG scores or polycystic ovarian morphology.

Conclusions: 11OxyAs levels were not statistically higher among women with NIH PCOS compared to at risk women who did not meet NIH criteria. There was no significant relationship between these androgens and mFG scores or ovarian morphology. Further studies are necessary to show the utility of 11OxyAs levels as a marker for hyperandrogenism or metabolic risk.

]]>
<![CDATA[SAT-LB132 3-Generation Study of Metabolic Disruption by Pregnancy Serum PFASs: Associations With Abdominal and Whole-Body Obesity in Granddaughters in a 60-Year Follow-Up of the Child Health and Development Studies Cohort]]> https://www.researchpad.co/product?articleinfo=N08136d20-789d-4af4-adb6-e2108e07584b

Abstract

Introduction. We previously found a 3.6-fold increased risk of breast cancer in daughters associated with high maternal (F0) early postpartum serum EtFOSAA combined with high F0 cholesterol (https://doi.org/10.1016/j.reprotox.2019.06.012). Here we test the hypothesis that F0 early postpartum EtFOSAA, in combination with F0 serum cholesterol predicts abdominal obesity (waist circumference > 88cm) and/or whole-body overweight or obesity (body mass index > 25 kg/m2) in daughters (F1) at age 30 and granddaughters (F2) at age 20. Methods. We measured F1 and F2 weight, height, waist circumference and blood pressure when F1 were an average age of 50 years and adult F2 were an average age of 20 years (N=213 triads). F1 also reported their weight at age 30, near the mean age of their pregnancies with their daughters (F2) to allow control for obesity during F2 gestation. EtFOSAA, PFOS, and cholesterol were assayed in archived early postpartum F0 serum samples collected within 3 days of delivery. Results. F0 cholesterol significantly (p<0.05) modified the association of F0 EtFOSAA with self-reported obesity at age 30 in F1 and measured abdominal and whole-body obesity, and blood pressure at age 20 in F2. Association patterns were similar for all outcomes: F0 EtFOSAA was associated with high metabolic risk when F0 serum cholesterol was low (Quartile 1): e.g. 20-year-old F2 had an estimated 2.3 fold increase in the joint risk of abdominal and whole-body obesity over the inter-quartile range of F0 ETFOSAA, 95% Confidence Interval= 1.1, 4.8. F0 EtFOSAA associations with F2 metabolic risk were independent of F0 race, early pregnancy overweight (BMI >25 kg/m2), and serum PFOS. F1 obesity at age 30 did not mediate F0 EtFOSAA associations with F2 outcomes, but additionally predicted high metabolic F2 risk. Conclusions. Findings support the hypothesis that in utero exposure to EtFOSAA impacts metabolic risk factors in female F2 exposed as germline and also independently via promotion of overweight in F1 (their mothers) during F2 gestation.

]]>
<![CDATA[SUN-712 Familial 46, XY Complete Female External Sex Development with a Non-Mosaic Inherited SRY Gene Variation]]> https://www.researchpad.co/product?articleinfo=Na6c459ef-5abb-4a15-81b8-098b20f108eb

Abstract

Context: SRY, an architectural transcription factor containing a SOX-related high-mobility group (HMG) box, initiates testis formation in the mammalian bipotential gonadal ridge. Inherited human SRY mutations can be associated with differences in sexual differentiation (DSD) with variable phenotypes in a family.

Objective: To describe the clinical, histopathological and molecular features of a novel inherited SRY allele (pMet64Val; consensus box position 9) observed within an extensive pedigree: two 46, XY sisters with primary amenorrhea (16 and 14 years of age; probands P1 and P2), their normal father and brother, and an affected paternal XY grandaunt.

Design, Setting, Participants and Outcome Measurements: Following DNA sequencing to identify the SRY mutation, hormonal studies of the probands and histopathological examination of their gonads were performed. Functional consequences of p.Met64Val (and other mutations at this site) were also investigated.

Results: Breast development in P1 and P2was Tanner II and IV, respectively. Müllerian structures and gonads resembling ovaries were found in each sister. Histopathology revealed gonadal dysgenesis, gonadoblastoma and dysgerminoma. AMH/MIS, P450 SCC, and P450 aromatase were expressed in gonadoblastoma tissues. Variant p.Met64Val impaired Sox9 transcriptional activation associated with attenuated occupancy of the testis-specific enhancersEnh13 and TESCO.

Conclusion: The partial biological activity of p.Met64Val SRY, maintained at the threshold of SRY function, rationalizes opposing paternal and proband phenotypes (the “the father-daughter paradox”).Sex steroids biosynthesis by gonadoblastoma may delay genetic diagnosis and recognition of gonadal tumors. Quantitative assessment of inherited SRY alleles highlights the tenuous transcriptional threshold of developmental decision-making in the bipotential gonadal ridge.

]]>
<![CDATA[MON-LB010 Cyclic Progesterone Therapy for Androgenic Polycystic Ovary Syndrome (PCOS) - A Systematic Review of the Literature]]> https://www.researchpad.co/product?articleinfo=Ne70e59fb-7483-46da-bb19-142ba6002b45

Abstract

Women living with androgenic PCOS (WLWP) experience unpredictable oligomenorrhea1 and are at increased risk for endometrial cancer2. Oral micronized progesterone (OMP) given cyclically (14 days/cycle or 4 weeks, Cyclic OMP), in luteal phase doses3 (300 mg at bedtime) as a “luteal phase replacement” therapy would be likely to effectively treat both. In addition, evidence suggests PCOS is causally related to rapid pulsing of GnRH and LH 4; OMP normalizes LH pulsatility if androgen levels are not elevated 4. Previous searches did not find progesterone therapy for PCOS 5. Our research question: Does the peer-reviewed literature provide evidence for prescribing cyclic progesterone therapy in PCOS? Literature search methods used Medline (Ovid) and PubMed for published articles. Our search terms were: “polycystic ovary syndrome”, “androgenic PCOS”, and, “micronized progesterone.” We sought publications with eligible women participants having androgenic PCOS, drug exposures (cyclic

OMP, vaginal progesterone, and in varying doses and durations) and specific outcomes (biochemical or patient-reported data or both) in all languages. We excluded reviews and practice guidelines but searched bibliographies for missed citations. Results discovered 18 articles in combined Medline (n=6) and PubMed (12) searches. After excluding duplicates, articles on estradiol (E2) alone E2 with OMP therapy, five eligible articles remained. We read all in full detail.

Progesterone therapy was beneficial for WLWP as, even in sub-therapeutic doses (<300 mg at bedtime) and in cycles of too short durations (<14 days), it decreased luteinizing hormone (LH) 6,7 and total testosterone 7 levels. Vaginal progesterone (200 mg, b.i.d for 2 to 12 weeks) added to letrozole ovulation induction increased the pregnancy rate from 0 to 21% 8. Although present data suggest Cyclic OMP withdrawal predictively causes flow, we found no evidence it improved women’s cycle-related experiences nor decreased acne and hirsutism. Women-reported data on Cyclic OMP for improving androgenic PCOS cycle regularity, daily experiences and risks for endometrial cancer are needed.

Reference: 1Azziz R Nat Rev Dis Primers 2016;2:16057. 2Barry J Hum Reprod Update 2014; 20:748. 3Simon J Fertil Steril 1993;60:26. 4Blank S Hum Reprod Update 2006;12:351. 5Teede H Clin Endocrinol (Oxf) 2018;89:251. 6Livadas S Fertil Steril 2010;94:242. 7Bagis T J Clin Endocr Met 2002;87:4536. 8Montville C Fertil Steril. 2010;94:678.

]]>
<![CDATA[MON-725 Transcriptome Profiling in Postnatal Pituitary Gland Identifies Cell Type-Driven Sex-Specific Changes]]> https://www.researchpad.co/product?articleinfo=N8daef0a1-ef3d-4858-ad75-301473877a1a

Abstract

The pituitary gland is integral to the regulation of growth, metabolism, puberty, reproduction, and stress responses. Previously, we found that many genes associated with age-at-menarche in genome-wide association studies (GWAS) displayed increasingly sex-biased expression across the pubertal transition in the mouse pituitary. However, whether this trend exists beyond puberty-related genes was not known. In addition, the regulatory mechanisms underlying these gene expression changes remained to be explored. To answer these questions, we profiled the transcriptome, including microRNAs, of mouse pituitary in both sexes across pubertal transition in an unbiased manner and leveraged a recently published pituitary single cell transcriptome to explore cellular composition changes. We found that the most dynamic temporal changes in both mRNA and miRNA expression occur prior to puberty, underscoring a role for regulation of early pituitary postnatal development. We also observed ~900 genes displaying sex-biased expression patterns, arising during early development and becoming increasingly biased across puberty, including known sex-biased genes such as Fshb and Lhb. However, sex differences in miRNA expression are less pronounced, only 13 miRNAs were found to be sex-biased, suggesting lesser contribution of miRNAs to sex-biased gene expression relative to other forms of regulation. To assess whether pituitary cellular composition could underlie changes in gene expression across pubertal transition, we performed single cell deconvolution of our bulk pituitary gland gene expression. Interestingly, we found that sex differences in cell proportions were estimated to emerge across puberty: a greater proportion of lactotropes was found among females, and greater proportions of gonadotropes and somatotropes were found among males. We observed sex-biased expression patterns of marker genes for these cell types, including Prl, Fshb, and Gh. This finding suggests that cell proportion differences between sexes likely contribute to whole pituitary transcriptome changes we observed, however, to what extent remains to be studied. Together our study indicates that miRNAs play a substantial role in regulation of pituitary postnatal development but that differences in cellular composition may contribute more robustly to sex-biased gene expression.

]]>
<![CDATA[MON-033 Androgen Increases the Accumulation of Advanced Glycation End Products in Granulosa Cells by Activating ER Stress in PCOS]]> https://www.researchpad.co/product?articleinfo=N05b76813-96c9-4ecd-a3f9-303de794006b

Abstract

Polycystic ovarian syndrome (PCOS) is associated with hyperandrogenism. Previously we found that androgen activated endoplasmic reticulum (ER) stress in granulosa cells of antral follicles in PCOS, contributing to ovarian fibrosis (1) and growth arrest of antral follicles (2). In addition, recent studies demonstrated the accumulation of advanced glycation end products (AGEs) in granulosa cells from PCOS patients, which contribute to its pathology. Based on these findings, we hypothesized that androgen upregulates the expression of the receptor for AGEs (RAGE) in granulosa cells of antral follicles by activating ER stress. This in turn, increases the accumulation of AGEs in these cells. In the present study, we found that testosterone induced the expression of RAGE and accumulation of AGE in cultured human granulosa-lutein cells (GLCs). These effects were inhibited with the treatment of tauroursodeoxycholic acid (TUDCA), a clinically available ER stress inhibitor agent. Knockdown of the transcription factor C/EBP homologous protein (CHOP), an unfolded protein response (UPR) factor activated by ER stress, inhibited the testosterone-induced RAGE expression and AGE accumulation. Pretreatment with flutamide, as well as knockdown of androgen receptor decreased the testosterone-induced RAGE expression. Expression of RAGE was increased in GLCs obtained from patients with PCOS. Concomitantly, the expression of RAGE and the accumulation of AGE was increased in granulosa cells of antral follicles from PCOS patients and dehydroepiandrosterone (DHEA)-induced PCOS mice. Administration of the RAGE inhibitor, FPS-ZM1 or TUDCA to PCOS mice, reduced the expression of RAGE and the accumulation of AGE in granulosa cells of antral follicles, accompanied by a reduction of atretic follicles and improvement in the estrous cycle. In summary, our findings indicate that hyperandrogenism in PCOS increases the expression of RAGE and accumulation of AGEs in the ovary by activating ER stress. The potential therapeutic benefit of targeting the AGE-RAGE system, either with a RAGE inhibitor or an ER stress inhibitor agents, may serve as a novel approach for the treatment of PCOS. (1) Takahashi et al. Sci Rep. 2017;7(1):10824. (2) Azhary et al. Endocrinol. 2019;160(1):119–132

]]>
<![CDATA[MON-029 Polycystic Ovary Syndrome (PCOS) in Adolescent Girls:Toward a Simple On-Treatment Predictor of Post-Treatment Ovulation Rate]]> https://www.researchpad.co/product?articleinfo=N711fa8e1-f355-468b-b3b1-a5483110fdf4

Abstract

There is no approved treatment for adolescent girls with PCOS. The vast majority of these patients are guided into a trajectory that starts with oral contraceptive (OC) treatment, leads into oligo-anovulatory subfertility, then into the use of assisted reproductive techniques, and ultimately into pregnancies with a double-to-triple risk for complications (such as gestational diabetes, preeclampsia and preterm birth) potentially with lifelong sequelae in the offspring.

Evidence is converging into the insight that adolescent PCOS is frequently driven by hepato-visceral fat excess (“central obesity”) ensuing from a mismatch between (rather restrictive) prenatal and (rather abundant) postnatal nutrition, on a background of genetic susceptibility (Trends Endocrinol Metab 2018;29:815). This insight has prompted the exploration of an alternative PCOS treatment that aims at reducing the central-fat excess (without causing weight loss in non-obese girls) in order to normalize the entire phenotype, including ovulation rate.

So far, this alternative approach has been tested in two randomized controlled pilot studies that were performed in non-obese girls with PCOS and with no need for contraception (total N=62; age 16 yr; BMI 24 Kg/m2; treatment for 1 year; ovulation assessment during the post-treatment year). In these studies, the effects of an OC were compared to those of SPIOMET, which is a low-dose combination of spironolactone (= a mixed anti-androgen and -mineralocorticoid, also activating brown adipose tissue; Diab Ob Metab 2019;21:509), pioglitazone and metformin (= two insulin sensitizers acting through different mechanisms).

Pooled results of the pilot studies confirm the first report (J Adolesc Health 2017;61:446) that SPIOMET has more normalizing effects than OC; there were approximately 3-fold more ovulations post-SPIOMET than post-OC; normovulation occurred only post-SPIOMET; anovulation was >10-fold more frequent post-OC.

Pooled results also disclosed two new features of adolescent PCOS: low concentrations of circulating CXCL14 (= a brown adipokine, signaling activity in brown adipose tissue; Cell Metab 2018;28:750) and miR-451a (= an inhibitor of THRSP-mediated hepatic lipogenesis; Mol Cell Endocrinol 2018;474:260), both of which remain abnormally low on OC, but normalize on SPIOMET treatment. The on-treatment Z-scores of fasting insulin and miR-451a explained together approximately 50% of the variation in post-treatment ovulation rates. This simple duo, if validated in larger and more diverse PCOS populations, may become a first on-treatment predictor of post-treatment ovulation rate.

]]>
<![CDATA[SAT-715 Bisphenol-A Alters Pancreatic B-Cell Proliferation and Mass in an Estrogen Receptor Beta-Dependent Manner]]> https://www.researchpad.co/product?articleinfo=N26e54b98-41cd-4352-9330-19c74b4e2823

Abstract

Bisphenol-A (BPA) is one of the highest volume chemicals produced worldwide. It is used as the base compound in the manufacture of polycarbonate plastics, epoxies and resins. Humans are consistently exposed to BPA and consistently it has been detected in the majority of individuals examined. Experimental research in animals, as well as human epidemiological studies, converge to conclude that BPA is a risk factor for the development of type 2 diabetes. In previous studies we have demonstrated that the exposure to BPA during embryonic development promote an increment of pancreatic β-cell mass. This was correlated with increased β-cell division and altered global gene expression in pancreatic β-cells. The aim of this work was to determinate whether ERβ was involved in the in the β-cell mass and proliferation increment observed in male mice offspring. ERβ+/- pregnant mice were treated with vehicle or BPA (10 μg/kg/day) from day 9 to 16 of gestation. Offspring pancreatic β-cell mass was measured at postnatal day 0 (P0) and 30 (P30). For ex vivo experiments Wild-type (WT) and ERβ-/- neonates as well as adult male and female mice were used. For in vitro, single islets cells were cultured for 48 h in the presence of 10 μmol/L BrdU, and vehicle, BPA (1, 10, 100 nM) or the specific ERβ agonist WAY200070 (1, 10, 100 nM). β-cell proliferation rate was quantified as the percentage of BrdU-positive pancreatic β-cells. In vivo exposure to BPA during pregnancy promoted an increment of pancreatic β-cell mass and proliferation in WT mice at P30 which was absent in ERβ -/- mice. In order to explore if these changes were related to a direct action of BPA on pancreatic β-cell division we performed a series of ex vivo experiments. Augmented β-cell proliferation rate was observed in BPA-exposed β-cells isolated from both adult male and female WT animals in comparison to controls. The increment was significant at all BPA doses tested. The effect was imitated by the selective ERβ agonist, WAY200070, and was abolished in cells from ERβ-/- mice. We also explored the effects of BPA in pancreatic β-cells from neonates and found an increment in BPA-exposed cells compared to controls, although the difference was only significant at the dose of 1 nM. A similar effect was observed in neonate cells treated with WAY200070 (10 nM). The effects on β-cell replication were abolished in cells from ERβ-/- neonate mice treated either with BPA or WAY200070. Our findings suggest that BPA modulate pancreatic β-cell growth and mass in an ERβ-dependent manner. This could have important implications for metabolic programming of T2DM. Ministerio de Economía y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) grants BPU2017-86579-R (AN) and BFU2016-77125-R (IQ); Generalitat Valenciana PROMETEO II/2015/016 (AN). CIBERDEM is an initiative of the Instituto de Salud Carlos III.

]]>
<![CDATA[SUN-719 The Impact of FOXA3 on Testicular Steroidogenesis]]> https://www.researchpad.co/product?articleinfo=N2d8fe9ea-2721-4346-97ef-a7b944999eb8

Abstract

The Forkhead box(Fox) transcription factors are evolutionarily conserved in organisms and regulate diverse biological processes during development as well as adult life. Among the Fox family, FoxA subfamily members Foxa1-3 have been termed `pioneer’ transcription factors as they bind both nucleosome-bound and nucleosome-free DNA targets with the same recognition site. Foxa3 is the only member of FoxA subfamily that is expressed in both male and female gonads. In the testis, Foxa3 is expressed in spermatids and interstitial Leydig cells. We focused our study to elucidate the role of FOXA3 in Leydig cells and its impact on testicular steroidogenesis. Expression of FOXA3 dramatically decreased in mouse Leydig cells during testicular development. In addition, the time-dependent expression of FOXA3 showed an opposite pattern to that of steroidogenic genes in cAMP-induced primary Leydig cells. Meanwhile, Nur77 is among the prime regulators of steroidogenesis in the testicular Leydig cells. Overexpression of FOXA3 in MA-10 cells (mouse Leydig tumor cell line) repressed the cAMP-induced Nur77 promoter activity, which further resulted in the reduced activity of Nur77-target steroidogenic gene promoters (StAR, CYP17A1and 3β-HSD). Similar to above results, the expression of Nur77 and its target genes,StAR, 3β-HSD and CYP11A1, were repressed by adenovirus-mediated overexpression of FOXA3 in mouse primary Leydig cells, although the expression of CYP17A1, another steroidogenic gene, was differentially affected. These results suggest that FOXA3 locally regulates the expression of steroidogenic genes through Nur77 during testicular development.

]]>
<![CDATA[MON-708 Characterizing DNA Methylation Signatures in Adipose Tissue from Metabolic Impaired Asymptomatic Individuals]]> https://www.researchpad.co/product?articleinfo=Nbbbf8d55-5ccd-48ae-b20d-ac399cb5329f

Abstract

Obesity remains as a global epidemic characterized by progressive metabolic dysregulation in glucose homeostasis. Along with a genetic association in the development of T2D, epigenetic regulation has been suggested as a significant contributor in altered gene expression. Recent studies have described DNA methylation changes in insulin-sensitive tissues involved in T2D pathogenesis, however epigenetic dynamics on early stages to metabolic alterations is still unclear.

We investigated potential DNA methylation signatures in 34 asymptomatic individuals from the GEMM family study. We compared differentially methylated CpG sites (DMC: B value>0 and delta Beta >|10%|; Infinium EPIC array) from subcutaneous adipose tissue (SCAT) in different groups of individuals according to BMI (kg/m2) and HbA1c (%) levels as follow: Group A Control (C): n=9, 22.0±1.9 kg/m2, 4.8±0.3%; Group B Overweight (OW) with normal HbA1c: n=6, 27.8±1.6 kg/m2, 5±0.2%; Group C Obese (OB) with normal HbA1c: n=6, 34.6±4.2 kg/m2, 5.2±0.2%; Group D Prediabetes (PD): n=7, 31.1±5.7 kg/m2, 5.9±0.2% and Group E T2D: n=6, 30.6±7.3 kg/m2, 7.2±0.9%.

We found 43 overlapping genes with shared pathways in all groups, mainly those related to metabolism and adipogenesis. We also documented particular altered methylated genes, in each group (OW: 386, OB:1005, PD:76 and T2D:189). Pathway enrichment analysis in OB and T2D was mainly related to glucose metabolism, while in OW and PD was NOTCH signaling. All groups displayed a consistent hypermethylation in RARA, ESR1 and NCOR2, well known genes involved in lipid metabolism. Additionally, we describe for the first time, a progression toward hypomethylation in ARHGAP15 and MTAP, related with an impaired metabolic status. Otherwise, analysis of overlapping CpG sites revealed a consistently hypermethylated state in OW (86.42%), OB (86.48%) and PD (51.72%), in contrast with the hypomethylation state (56.3%) observed in the T2D group, previously observed elsewhere (1).

In conclusion, comparison of methylation in SCAT obtained from OW, OB, PD and T2D individuals, display potential pathways and DMC signatures specific in each group. Common novel overlapping genes in global DNA methylation profiles of SCAT, were also observed.

Reference: (1) Barajas-Olmos et al., BMC Med Genet. 2018 Feb 21;19(1):1-8.

Nothing to Disclose: FE, FB, AM, EH, GEMM, ER, RB, LO.

]]>
<![CDATA[MON-711 Induction of Apolipoprotein A1 Gene Expression by the Rare Sugar Allulose]]> https://www.researchpad.co/product?articleinfo=N528ced81-ba79-4425-9e49-d59a2a5c2131

Abstract

Apolipoprotein A-I (apo A-I) is the primary protein component of high-density lipoprotein (HDL) and has many well documented properties which promote cardiovascular health. However, clinical trials designed to increase HDL levels by preventing its catabolism have failed in their primary endpoints in decreasing the risk of cardiovascular disease. Alternative strategies to increase de-novo apo A-I production may be more attractive. We recently demonstrated that the rare sugar allulose decreases oxidative stress and endoplasmic reticulum stress in both endothelial cells and hepatocytes. During these studies we demonstrated that allulose also induces apo A-I secretion by HepG2 cells. Apo A-I, albumin, and SP1 levels were measured by Western blot. Apo A-I and glyceraldehyde-3-phosphate (GAPDH) mRNA levels were measured by quantitative real-time polymerase chain reaction. The effect of allulose on apo A-I promoter activity was measured using transient transfection assays with several plasmids containing various segments and mutations in the apo A-I gene promoter. Apo A-I protein and mRNA levels in cells treated with allulose increased more than two-fold in a dose-dependent manner. These changes were due to the ability of allulose to induce apo A-I gene promoter activity. Using a series of deletion constructs, an allulose-response element was identified in the apo A-I gene promoter which was previously shown to confer induction of apo A-I gene expression by insulin and epidermal growth factor (EGF), the insulin response core element (IRCE). Mutation of the IRCE decreased the ability of allulose and insulin to induce apo A-I promoter activity. Allulose treatment also increased expression of the transcription factor SP1, which had been shown previously be essential for the effects of insulin and EGF on apo A-I promoter activity. In conclusion, allulose increased apo A-I gene expression in HepG2 hepatocytes. This effect was mediated by the IRCE in the apo A-I gene promoter and the transcription factor SP1. The rare sugar allulose may have novel anti-atherogenic properties, in part, by increasing HDL levels.

]]>
<![CDATA[SAT-724 Endocrine Disruption by Phthalate Exposure in the Pediatric Intensive Care Unit]]> https://www.researchpad.co/product?articleinfo=N1cfc225e-9820-4d25-9faf-ef21a7a0c17b

Abstract

Aim: Pediatric intensive care relies on plastic indwelling medical devices softened by phthalates. Phthalates leach into the circulation and concerns about toxicity were raised. Exceeding a certain threshold of di(2-ethylhexyl)phthalate (DEHP) exposure in the pediatric intensive care unit (PICU) has been associated with an attention deficit 4 years later (1). Moreover, DEHP and its metabolites have endocrine disrupting properties. Critically ill children reveal the non-thyroidal illness syndrome (2) and unexplained relatively low cortisol (3). Whether DEHP exposure in PICU has endocrine disruptive effects is unknown. We investigated whether DEHP exposure in the PICU, exceeding the previously identified “toxic” threshold for attention, is independently associated with thyroid- and HPA-axis alterations upon PICU discharge. Methods: In this preplanned secondary analysis of the PEPaNIC RCT (N=1440) (4), plasma DEHP metabolite concentrations (MEHP, 5OH-MEHP, 5cx-MEPP, 5oxo-MEHP) were quantified for all patients with a last PICU day sample (N=920). Minimal DEHP exposure was defined as the product of the total DEHP metabolite concentrations on the last PICU day and duration of PICU stay, with 0.551 µmol/L.days identified as “toxic” threshold (1). Serum TSH, total T4, total T3 and rT3 concentrations were quantified for patients with an available last day sample (N=913). For patients with a last day plasma sample and who did not receive corticosteroids (N=391), plasma ACTH, total cortisol, albumin and CBG concentrations were quantified and free cortisol calculated. Multivariable linear regression analyses, adjusted for baseline risk factors and for duration of PICU stay, assessed whether exceeding the previously determined threshold of toxic DEHP exposure was independently associated with the hormone levels on the last PICU day. Main results: Median total DEHP metabolite concentration was 0.101 (IQR 0.049 - 0.279) µmol/L on the last PICU day. Minimal DEHP exposure was 0.337 (IQR 0.161 - 0.880) µmol/l.days, and 328 patients (35.7%) exceeded the toxic threshold. Exceeding this threshold was independently associated with lower total T4 (P=0.002), total T3 (P=0.02) and total cortisol (P=0.001), and higher rT3 (P=0.01) concentrations on the last PICU day, but not with TSH, ACTH or free cortisol. Conclusion: Critically ill children had DHEP metabolites in plasma upon PICU discharge and more than a third were exposed to toxic levels. Toxic DEHP exposure was an independent contributor to the severity of the non-thyroidal illness phenotype and to lower cortisol upon PICU discharge. Future research should assess whether such endocrine-disruptive impact of DHEP exposure in the PICU plays a role in the long-term developmental legacy of critical illness in children. 1 Verstraete et al Intensive Care Med 2016 2 Jacobs et al Thyroid 2019 3 Jacobs et al Intensive Care Med 2019 4 Fivez et al N Engl J Med 2016

]]>
<![CDATA[rhIGF-1/BP3 Preserves Lung Growth and Prevents Pulmonary Hypertension in Experimental Bronchopulmonary Dysplasia]]> https://www.researchpad.co/product?articleinfo=Nf771a2a6-8dca-4450-b194-3933ac1c38bb

Rationale: Antenatal factors, such as chorioamnionitis, preeclampsia, and postnatal injury, are associated with an increased risk for bronchopulmonary dysplasia (BPD) and pulmonary hypertension (PH) after preterm birth. IGF-1 (insulin-like growth factor-1) is markedly decreased in normal preterm infants, but whether IGF-1 treatment can prevent BPD or PH is unknown.

Objectives: To evaluate whether postnatal treatment with rhIGF-1 (recombinant human IGF-1)/BP3 (binding peptide 3) improves lung growth and prevents PH in two antenatal models of BPD induced by intraamniotic exposure to endotoxin (ETX) or sFlt-1 (soluble fms-like tyrosine kinase 1), and in a postnatal model due to prolonged hyperoxia.

Methods: ETX or sFlt-1 were administered into the amniotic sac of pregnant rats at Embryonic Day 20 to simulate antenatal models of chorioamnionitis and preeclampsia, respectively. Pups were delivered by cesarean section at Embryonic Day 22 and treated with rhIGF-1/BP3 (0.02–20 mg/kg/d intraperitoneal) or buffer for 2 weeks. Study endpoints included radial alveolar counts (RACs), vessel density, and right ventricular hypertrophy (RVH). Direct effects of rhIGF-1/BP3 (250 ng/ml) on fetal lung endothelial cell proliferation and tube formation and alveolar type 2 cell proliferation were studied by standard methods in vitro.

Measurements and Main Results: Antenatal ETX and antenatal sFlt-1 reduced RAC and decreased RVH in infant rats. In both models, postnatal rhIGF-1/BP3 treatment restored RAC and RVH to normal values when compared with placebo injections. rhIGF-1/BP3 treatment also preserved lung structure and prevented RVH after postnatal hyperoxia. In vitro studies showed that rhIGF-1/BP3 treatment increased lung endothelial cell and alveolar type 2 cell proliferation.

Conclusions: Postnatal rhIGF-1/BP3 treatment preserved lung structure and prevented RVH in antenatal and postnatal BPD models. rhIGF-1/BP3 treatment may provide a novel strategy for the prevention of BPD in preterm infants.

]]>