ResearchPad - Developmental Biology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Placental transfer of Letermovir &amp; Maribavir in the <i>ex vivo</i> human cotyledon perfusion model. New perspectives for <i>in utero</i> treatment of congenital cytomegalovirus infection]]> https://www.researchpad.co/article/elastic_article_11236 Congenital cytomegalovirus infection can lead to severe sequelae. When fetal infection is confirmed, we hypothesize that fetal treatment could improve the outcome. Maternal oral administration of an effective drug crossing the placenta could allow fetal treatment. Letermovir (LMV) and Maribavir (MBV) are new CMV antivirals, and potential candidates for fetal treatment.MethodsThe objective was to investigate the placental transfer of LMV and MBV in the ex vivo method of the human perfused cotyledon. Term placentas were perfused, in an open-circuit model, with LMV or MBV at concentrations in the range of clinical peak plasma concentrations. Concentrations were measured using ultraperformance liquid chromatography coupled with tandem mass spectrometry. Mean fetal transfer rate (FTR) (fetal (FC) /maternal concentration), clearance index (CLI), accumulation index (AI) (retention of each drug in the cotyledon tissue) were measured. Mean FC were compared with half maximal effective concentrations of the drugs (EC50(LMV) and EC50(MBV)).ResultsFor LMV, the mean FC was (± standard deviation) 1.1 ± 0.2 mg/L, 1,000-fold above the EC50(LMV). Mean FTR, CLI and AI were 9 ± 1%, 35 ± 6% and 4 ± 2% respectively. For MBV, the mean FC was 1.4 ± 0.2 mg/L, 28-fold above the EC50(MBV). Mean FTR, CLI and AI were 10 ± 1%, 50 ± 7% and 2 ± 1% respectively.ConclusionsDrugs’ concentrations in the fetal side should be in the range for in utero treatment of fetuses infected with CMV as the mean FC was superior to the EC50 for both molecules. ]]> <![CDATA[Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of <i>Bacillus cereus</i> and comparison with exogenous humic acid application]]> https://www.researchpad.co/article/elastic_article_11229 Heat stress is one of the major abiotic stresses that impair plant growth and crop productivity. Plant growth-promoting endophytic bacteria (PGPEB) and humic acid (HA) are used as bio-stimulants and ecofriendly approaches to improve agriculture crop production and counteract the negative effects of heat stress. Current study aimed to analyze the effect of thermotolerant SA1 an isolate of Bacillus cereus and HA on tomato seedlings. The results showed that combine application of SA1+HA significantly improved the biomass and chlorophyll fluorescence of tomato plants under normal and heat stress conditions. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA) content; however, combined application of SA1+HA markedly reduced ABA and increased SA. Antioxidant enzymes activities revealed that SA1 and HA treated plants exhibited increased levels of ascorbate peroxidase (APX), superoxide dismutase (SOD), and reduced glutathione (GSH). In addition, heat stress markedly reduced the amino acid contents; however, the amino acids were increased with co-application of SA1+HA. Similarly, inductively-coupled plasma mass-spectrometry results showed that plants treated with SA1+HA exhibited significantly higher iron (Fe+), phosphorus (P), and potassium (K+) uptake during heat stress. Heat stress increased the relative expression of SlWRKY33b and autophagy-related (SlATG5) genes, whereas co-application of SA1+HA augmented the heat stress response and reduced SlWRKY33b and SlATG5 expression. The heat stress-responsive transcription factor (SlHsfA1a) and high-affinity potassium transporter (SlHKT1) were upregulated in SA1+HA-treated plants. In conclusion, current findings suggest that co-application with SA1+HA can be used for the mitigation of heat stress damage in tomato plants and can be commercialized as a biofertilizer.

]]>
<![CDATA[Mechanical stimulation induced osteogenic differentiation of BMSCs through TWIST/E2A/p21 axis]]> https://www.researchpad.co/article/elastic_article_9226 The relationship between mechanical force and alveolar bone remodeling is an important issue in orthodontics because tooth movement is dependent on the response of bone tissue to the mechanical force induced by the appliances used. Mechanical cyclical stretch plays an essential role in the cell osteogenic differentiation involved in bone remodeling. However, the underlying mechanisms are unclear, particularly the molecular pathways regulated by mechanical stimulation. In the present study, we reported a dynamic change of p21 level in response to mechanical cyclical stretch, and shRNA-p21 in bone marrow mesenchymal stem cells (BMSCs) induced osteogenic differentiation. The mechanism was mediated through TWIST/E2A/p21 axis. These results supported the mechanical stimulation-induced osteogenic differentiation is negatively regulated by p21.

]]>
<![CDATA[The role of SUMOylation during development]]> https://www.researchpad.co/article/elastic_article_9182 During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.

]]>
<![CDATA[Active Notch signaling is required for arm regeneration in a brittle star]]> https://www.researchpad.co/article/elastic_article_7845 Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.

]]>
<![CDATA[Regulation of cell growth and migration by miR-96 and miR-183 in a breast cancer model of epithelial-mesenchymal transition]]> https://www.researchpad.co/article/elastic_article_7836 Breast cancer is the most commonly diagnosed malignancy in women, and has the second highest mortality rate. Over 90% of all cancer-related deaths are due to metastasis, which is the spread of malignant cells from the primary tumor to a secondary site in the body. It is hypothesized that one cause of metastasis involves epithelial-mesenchymal transition (EMT). When epithelial cells undergo EMT and transition into mesenchymal cells, they display increased levels of cell proliferation and invasion, resulting in a more aggressive phenotype. While many factors regulate EMT, microRNAs have been implicated in driving this process. MicroRNAs are short noncoding RNAs that suppress protein production, therefore loss of microRNAs may promote the overexpression of specific target proteins important for EMT. The goal of this study was to investigate the role of miR-96 and miR-183 in EMT in breast cancer. Both miR-96 and miR-183 were found to be downregulated in post-EMT breast cancer cells. When microRNA mimics were transfected into these cells, there was a significant decrease in cell viability and migration, and a shift from a mesenchymal to an epithelial morphology (mesenchymal-epithelial transition or MET). These MET-related changes may be facilitated in part by the regulation of ZEB1 and vimentin, as both of these proteins were downregulated when miR-96 and miR-183 were overexpressed in post-EMT cells. These findings indicate that the loss of miR-96 and miR-183 may help facilitate EMT and contribute to the maintenance of a mesenchymal phenotype. Understanding the role of microRNAs in regulating EMT is significant in order to not only further elucidate the pathways that facilitate metastasis, but also identify potential therapeutic options for preventing or reversing this process.

]]>
<![CDATA[The Rho-associated kinase inhibitor fasudil can replace Y-27632 for use in human pluripotent stem cell research]]> https://www.researchpad.co/article/elastic_article_7829 Poor survival of human pluripotent stem cells (hPSCs) following freezing, thawing, or passaging hinders the maintenance and differentiation of stem cells. Rho-associated kinases (ROCKs) play a crucial role in hPSC survival. To date, a typical ROCK inhibitor, Y-27632, has been the primary agent used in hPSC research. Here, we report that another ROCK inhibitor, fasudil, can be used as an alternative and is cheaper than Y-27632. It increased hPSC growth following thawing and passaging, like Y-27632, and did not affect pluripotency, differentiation ability, and chromosome integrity. Furthermore, fasudil promoted retinal pigment epithelium (RPE) differentiation and the survival of neural crest cells (NCCs) during differentiation. It was also useful for single-cell passaging of hPSCs and during aggregation. These findings suggest that fasudil can replace Y-27632 for use in stem research.

]]>
<![CDATA[New estimates of the Zika virus epidemic attack rate in Northeastern Brazil from 2015 to 2016: A modelling analysis based on Guillain-Barré Syndrome (GBS) surveillance data]]> https://www.researchpad.co/article/elastic_article_7754 The mandatory reporting of the Zika virus (ZIKV) disease began region-wide in February 2016, and it is believed that ZIKV cases could have been highly under-reported before that. Given the Guillain-Barré syndrome (GBS) is relatively well reported, the GBS surveillance data has the potential to act as a reasonably reliable proxy for inferring the true ZIKV epidemics. We developed a mathematical model incorporating weather effects to study the ZIKV-GBS epidemics and estimated the key epidemiological parameters. It was found that the attack rate of ZIKV was likely to be lower than 33% over the two epidemic waves. The risk rate from symptomatic ZIKV case to develop GBS was estimated to be approximately 0.0061%. The analysis suggests that it would be difficult for another ZIKV outbreak to appear in Northeastern Brazil in the near future.

]]>
<![CDATA[Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts]]> https://www.researchpad.co/article/elastic_article_7742 A behavioral change from shy solitarious individuals to highly social gregarious individuals is critical to the formation of disastrous swarms of locusts. However, the underlying molecular mechanism of behavioral plasticity regulated by hormones is still largely unknown. Here, we investigated the effect of juvenile hormone (JH) on the behavioral transition in fourth-instar gregarious and solitarious locusts. We found that JH induced the behavioral shift of the gregarious locust from attraction to repulsion to the volatiles of gregarious locusts. The solitarious locust significantly decreased repulsion behavior after deprivation of JH by precocene or knockdown of JHAMT, a key enzyme to synthesize JH. JH application on gregarious locusts caused significant expression alteration of genes, especially the olfactory genes TO and CSP in the antennae. We further demonstrated that the JH signaling pathway suppressed aggregation behavior in gregarious locusts by increasing TO1 expression and decreasing CSP3 expression at the same time. Our results suggested that internal physiological factors can directly modulate periphery olfactory system to produce behavioral plasticity.

]]>
<![CDATA[Oral administration with a traditional fermented multi-fruit beverage modulates non-specific and antigen-specific immune responses in BALB/c mice]]> https://www.researchpad.co/article/elastic_article_7730 Fruits have been widely considered as the default “health foods” because they contain numerous vitamins and minerals needed to sustain human health. Fermentation strategies have been utilized to enhance the nutritive and flavor features of healthy and readily consumable fruit products while extending their shelf lives. A traditional fermented multi-fruit beverage was made from five fruits including kiwi, guava, papaya, pineapple, and grape fermented by Saccharomyces cerevisiae along with lactic acid bacteria and acetic acid bacteria. The immunomodulatory properties of the fermented multi-fruit beverage, in vivo nonspecific and ovalbumin (OVA)-specific immune response experiments using female BALB/c mice were performed. Administration of the fermented multi-fruit beverage reduced the calorie intake, thus resulting in a less weight gain in mice compared to the water (placebo)-fed mice. In the nonspecific immune study model, the fermented multi-fruit beverage enhanced phagocytosis and T cell proliferation but did not affect B cell proliferation and immunoglobulin G (IgG) production. Analysis of cytokine secretion profile also revealed that the fermented multi-fruit beverage enhanced proinflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and T helper (Th)1-related cytokine interferon (IFN)-γ production, thus creating an immunostimulatory effect. Nonetheless, in the specific immune study model, the results showed that the fermented multi-fruit beverage decreased the production of proinflammatory cytokines IL-6 and TNF-α production in OVA-immunized mice. Moreover, it also caused a decrease in the production of anti-OVA IgG1, which was accompanied by a decrease in Th2-related cytokines IL-4 and IL-5 production and an increase in Th1-related cytokine IFN-γ production, indicating that it may have the potential to shift the immune system from the allergen‐specific Th2 responses toward Th1-type responses. The results indicate that fermented multi-fruit beverage has the potential to modulate immune responses both in a nonspecific and specific manners.

]]>
<![CDATA[Digestibility of black soldier fly larvae (<i>Hermetia illucens</i>) fed to leopard geckos (<i>Eublepharis macularius</i>)]]> https://www.researchpad.co/article/elastic_article_7714 Black soldier fly (BSF) larvae have been marketed as an excellent choice for providing calcium to reptiles without the need of dusting or gut loading. However, previous studies have indicated that they have limited calcium digestibility and are deficient in fat soluble vitamins (A, D3, and E). In this feeding and digestibility trial, 24 adult male leopard geckos were fed one of three diets for 4 months: 1) whole, vitamin A gut loaded larvae; 2) needle pierced, vitamin A gut loaded larvae; or 3) whole, non-gut loaded larvae. Fecal output from the geckos was collected daily and apparent digestibility was calculated for dry matter, protein, fat, and minerals. There were no differences in digestibility coefficients among groups. Most nutrients were well digested by the leopard geckos when compared to previous studies, with the exception of calcium (digestibility co-efficient 43%), as the calcium-rich exoskeleton usually remained intact after passage through the GI tract. Biochemistry profiles revealed possible deficits occurring over time for calcium, sodium, and total protein. In regards to vitamin A digestibility, plasma and liver vitamin A concentrations were significantly higher in the supplemented groups (plasma- gut loaded groups: 33.38 ± 7.11 ng/ml, control group: 25.8 ± 6.72 ng/ml, t = 1.906, p = 0.04; liver- gut loaded groups: 28.67 ± 18.90 μg/g, control group: 14.13 ± 7.41 μg/g, t = 1.951, p = 0.03). While leopard geckos are able to digest most of the nutrients provided by BSF larvae, including those that have been gut loaded, more research needs to be performed to assess whether or not they provide adequate calcium in their non-supplemented form.

]]>
<![CDATA[Plasma Galectin-3 predicts deleterious vascular dysfunction affecting post-myocardial infarction patients: An explanatory study]]> https://www.researchpad.co/article/elastic_article_7712 In a previous analysis of a post-myocardial infarction (MI) cohort, abnormally high systemic vascular resistances (SVR) were shown to be frequently revealed by MRI during the healing period, independently of MI severity, giving evidence of vascular dysfunction and limiting further recovery of cardiac function. The present ancillary and exploratory analysis of the same cohort was aimed at characterizing those patients suffering from high SVR remotely from MI with a large a panel of cardiovascular MRI parameters and blood biomarkers.MethodsMRI and blood sampling were performed 2–4 days after a reperfused MI and 6 months thereafter in 121 patients. SVR were monitored with a phase-contrast MRI sequence and patients with abnormally high SVR at 6-months were characterized through MRI parameters and blood biomarkers, including Galectin-3, an indicator of cardiovascular inflammation and fibrosis after MI. SVR were normal at 6-months in 90 patients (SVR-) and abnormally high in 31 among whom 21 already had high SVR at the acute phase (SVR++) while 10 did not (SVR+).ResultsWhen compared with SVR-, both SVR+ and SVR++ exhibited lower recovery in cardiac function from baseline to 6-months, while baseline levels of Galectin-3 were significantly different in both SVR+ (median: 14.4 (interquartile range: 12.3–16.7) ng.mL-1) and SVR++ (13.0 (11.7–19.4) ng.mL-1) compared to SVR- (11.7 (9.8–13.5) ng.mL-1, both p < 0.05). Plasma Galectin-3 was an independent baseline predictor of high SVR at 6-months (p = 0.002), together with the baseline levels of SVR and left ventricular end-diastolic volume, whereas indices of MI severity and left ventricular function were not. In conclusion, plasma Galectin-3 predicts a deleterious vascular dysfunction affecting post-MI patients, an observation that could lead to consider new therapeutic targets if confirmed through dedicated prospective studies. ]]> <![CDATA[Functional and structural consequences of epithelial cell invasion by <i>Bordetella pertussis</i> adenylate cyclase toxin]]> https://www.researchpad.co/article/elastic_article_7693 Bordetella pertussis, the causative agent of whopping cough, produces an adenylate cyclase toxin (CyaA) that plays a key role in the host colonization by targeting innate immune cells which express CD11b/CD18, the cellular receptor of CyaA. CyaA is also able to invade non-phagocytic cells, via a unique entry pathway consisting in a direct translocation of its catalytic domain across the cytoplasmic membrane of the cells. Within the cells, CyaA is activated by calmodulin to produce high levels of cyclic adenosine monophosphate (cAMP) and alter cellular physiology. In this study, we explored the effects of CyaA toxin on the cellular and molecular structure remodeling of A549 alveolar epithelial cells. Using classical imaging techniques, biochemical and functional tests, as well as advanced cell mechanics method, we quantify the structural and functional consequences of the massive increase of intracellular cyclic AMP induced by the toxin: cell shape rounding associated to adhesion weakening process, actin structure remodeling for the cortical and dense components, increase in cytoskeleton stiffness, and inhibition of migration and repair. We also show that, at low concentrations (0.5 nM), CyaA could significantly impair the migration and wound healing capacities of the intoxicated alveolar epithelial cells. As such concentrations might be reached locally during B. pertussis infection, our results suggest that the CyaA, beyond its major role in disabling innate immune cells, might also contribute to the local alteration of the epithelial barrier of the respiratory tract, a hallmark of pertussis.

]]>
<![CDATA[The adipokine vaspin is associated with decreased coronary in-stent restenosis <i>in vivo</i> and inhibits migration of human coronary smooth muscle cells <i>in vitro</i>]]> https://www.researchpad.co/article/elastic_article_7692 Percutaneous coronary intervention represents the most important treatment modality of coronary artery stenosis. In-stent restenosis (ISR) is still a limitation for the long-term outcome despite the introduction of drug eluting stents. It has been shown that adipokines directly influence vessel wall homeostasis by influencing the function of endothelial cells and arterial smooth muscle cells. Visceral adipose tissue-derived serpin vaspin was recently identified as a member of serine protease inhibitor family and serveral studies could demonstrate a relation to metabolic diseases. The aim of this study was to investigate a role of vaspin in the development of in-stent restenosis in vivo and on migration of smooth muscle cells and endothelial cells in vitro.MethodsWe studied 85 patients with stable coronary artery disease who underwent elective and successful PCI with implatation of drug eluting stents. Blood samples were taken directly before PCI. Vaspin plasma levels were measured by specific ELISA. ISR was evaluated eight months later by coronary angiography. Human coronary artery smooth muscle cells (HCASMC) and human umbilical vein endothelial cells (HUVEC) migration was analyzed by an in-vitro migration assay with different concentrations (0.004ng/mL up to 40ng/mL) of vaspin as well as by an scratch assay. For proliferation an impedance measurement with specialiced E-Plates was performed.ResultsDuring the follow up period, 14 patients developed ISR. Patients with ISR had significantly lower vaspin plasma levels compared to patients without ISR (0.213 ng/ml vs 0.382 ng/ml; p = 0.001). In patients with plasma vaspin levels above 1.35 ng/ml we could not observe any restenosis. There was also a significant correlation of plasma vaspin levels and late lumen loss in the stented coronary segments. Further we could demonstrate that vaspin nearly abolishes serum induced migration of HCASMC (100% vs. 9%; p<0.001) in a biphasic manner but not migration of HUVEC. Proliferation of HCASMC and HUVEC was not modulated by vaspin treatment.ConclusionWe were able to show that the adipokine vaspin selectively inhibits human coronary SMC migration in vitro and has no effect on HUVEC migration. Vaspin had no effect on proliferation of HUVEC which is an important process of the healing of the stented vessel. In addition, the occurrence of ISR after PCI with implantation of drug eluting stents was significantly associated with low vaspin plasma levels before intervention. Determination of vaspin plasma levels before PCI might be helpful in the identification of patients with high risk for development of ISR after stent implantation. In addition, the selective effects of vaspin on smooth muscle cell migration could potentially be used to reduce ISR without inhibition of re-endothelialization of the stented segment. ]]> <![CDATA[Investigating gene-microRNA networks in atrial fibrillation patients with mitral valve regurgitation]]> https://www.researchpad.co/article/elastic_article_7684 Atrial fibrillation (AF) is predicted to affect around 17.9 million individuals in Europe by 2060. The disease is associated with severe electrical and structural remodelling of the heart, and increased the risk of stroke and heart failure. In order to improve treatment and find new drug targets, the field needs to better comprehend the exact molecular mechanisms in these remodelling processes.ObjectivesThis study aims to identify gene and miRNA networks involved in the remodelling of AF hearts in AF patients with mitral valve regurgitation (MVR).MethodsTotal RNA was extracted from right atrial biopsies from patients undergoing surgery for mitral valve replacement or repair with AF and without history of AF to test for differentially expressed genes and miRNAs using RNA-sequencing and miRNA microarray. In silico predictions were used to construct a mRNA-miRNA network including differentially expressed mRNAs and miRNAs. Gene and chromosome enrichment analysis were used to identify molecular pathways and high-density AF loci.ResultsWe found 644 genes and 43 miRNAs differentially expressed in AF patients compared to controls. From these lists, we identified 905 pairs of putative miRNA-mRNA interactions, including 37 miRNAs and 295 genes. Of particular note, AF-associated miR-130b-3p, miR-338-5p and miR-208a-3p were differentially expressed in our AF tissue samples. These miRNAs are predicted regulators of several differentially expressed genes associated with cardiac conduction and fibrosis. We identified two high-density AF loci in chromosomes 14q11.2 and 6p21.3.ConclusionsAF in MVR patients is associated with down-regulation of ion channel genes and up-regulation of extracellular matrix genes. Other AF related genes are dysregulated and several are predicted to be targeted by miRNAs. Our novel miRNA-mRNA regulatory network provides new insights into the mechanisms of AF. ]]> <![CDATA[Confocal Raman microscopy to identify bacteria in oral subgingival biofilm models]]> https://www.researchpad.co/article/elastic_article_7675 The study of oral disease progression, in relation to the accumulation of subgingival biofilm in gingivitis and periodontitis is limited, due to either the ability to monitor plaque in vitro. When compared, optical spectroscopic techniques offer advantages over traditional destructive or biofilm staining approaches, making it a suitable alternative for the analysis and continued development of three-dimensional structures. In this work, we have developed a confocal Raman spectroscopy analysis approach towards in vitro subgingival plaque models. The main objective of this study was to develop a method for differentiating multiple oral subgingival bacterial species in planktonic and biofilm conditions, using confocal Raman microscopy. Five common subgingival bacteria (Fusobacterium nucleatum, Streptococcus mutans, Veillonella dispar, Actinomyces naeslundii and Prevotella nigrescens) were used and differentiated using a 2-way orthogonal Partial Least Square with Discriminant Analysis (O2PLS-DA) for the collected spectral data. In addition to planktonic growth, mono-species biofilms cultured using the ‘Zürich Model’ were also analyzed. The developed method was successfully used to predict planktonic and mono-species biofilm species in a cross validation setup. The results show differences in the presence and absence of chemical bands within the Raman spectra. The O2PLS-DA model was able to successfully predict 100% of all tested planktonic samples and 90% of all mono-species biofilm samples. Using this approach we have shown that Confocal Raman microscopy can analyse and predict the identity of planktonic and mono-species biofilm species, thus enabling its potential as a technique to map oral multi-species biofilm models.

]]>
<![CDATA[Application of co-culture technology of epithelial type cells and mesenchymal type cells using nanopatterned structures]]> https://www.researchpad.co/article/elastic_article_7654 Various nanopatterning techniques have been developed to improve cell proliferation and differentiation efficiency. As we previously reported, nanopillars and pores are able to sustain human pluripotent stem cells and differentiate pancreatic cells. From this, the nanoscale patterns would be effective environment for the co-culturing of epithelial and mesenchymal cell types. Interestingly, the nanopatterning selectively reduced the proliferative rate of mesenchymal cells while increasing the expression of adhesion protein in epithelial type cells. Additionally, co-cultured cells on the nanopatterning were not negatively affected in terms of cell function metabolic ability or cell survival. This is in contrast to conventional co-culturing methods such as ultraviolet or chemical treatments. The nanopatterning appears to be an effective environment for mesenchymal co-cultures with typically low proliferative rates cells such as astrocytes, neurons, melanocytes, and fibroblasts without using potentially damaging treatments.

]]>
<![CDATA[Managing possible serious bacterial infection of young infants where referral is not possible: Lessons from the early implementation experience in Kushtia District learning laboratory, Bangladesh]]> https://www.researchpad.co/article/elastic_article_7649 Serious infections account for 25% of global newborn deaths annually, most in low-resource settings where hospital-based treatment is not accessible or feasible. In Bangladesh, one-third of neonatal deaths are attributable to serious infection; in 2014, the government adopted new policy for outpatient management of danger signs indicating possible serious bacterial infections (PSBI) when referral was not possible. We conducted implementation research to understand what it takes for a district health team to implement quality outpatient PSBI management per national guidelines.MethodsPSBI management was introduced as part of the Comprehensive Newborn Care Package in 2015. The study piloted this package through government health systems with limited partner support to inform scale-up efforts. Data collection included facility register reviews for cases seen at primary level facilities; facility readiness and provider knowledge and skills assessments; household surveys capturing caregiver knowledge of newborn danger signs and care-seeking for newborn illness; and follow-up case tracking, capturing treatment adherence and outcomes. Analysis consisted of descriptive statistics.ResultsOver the 15-month implementation period, 1432 young infants received care, of which 649 (45%) were classified as PSBI. Estimated coverage of care-seeking increased from 22% to 42% during the implementation period. Although facility readiness and providers’ skills increased, providers’ adherence to guidelines was not optimal. Among locally managed PSBI cases, 75% completed the oral antibiotic course and 15% received the fourth day follow-up. Care-seeking remained high among private providers (95%), predominantly village health doctors (over 80%).ConclusionsFacility readiness, including health care provider knowledge and skills were strengthened; future efforts should focus on improving provider adherence to guidelines. Social and behavior change strategies targeting families and communities should explore shifting care-seeking from private, possibly less-qualified providers. Strategies to improve private sector management of PSBI cases and improved linkages between private and public sector providers could be explored. ]]> <![CDATA[Identification of miRNA signatures associated with radiation-induced late lung injury in mice]]> https://www.researchpad.co/article/elastic_article_7641 Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180). Within the first two weeks after exposure, weight gain slowed compared to sham treated mice along with a temporary drop in white blood cell counts. 52% of C3H (33 of 64) and 72% of C57Bl/6 (46 of 64) irradiated mice died due to late radiation injury. Lung and heart damage, as assessed by computed tomography (CT) and histology at 150 (C3H mice) and 180 (C57Bl/6 mice) days, correlated well with the appearance of a local, miRNA signature in the lung and heart tissue of irradiated animals, consistent with inherent differences in the C3H and C57Bl/6 strains in their propensity for developing radiation-induced pneumonitis or fibrosis, respectively. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days after exposure and included miRNA known to regulate inflammation and fibrosis. Importantly, early changes in plasma miRNA expression predicted survival with reasonable accuracy (88–92%). The miRNA signature that predicted survival in C3H mice, including miR-34a-5p, -100-5p, and -150-5p, were associated with pro-inflammatory NF-κB-mediated signaling pathways, whereas the signature identified in C57Bl/6 mice (miR-34b-3p, -96-5p, and -802-5p) was associated with TGF-β/SMAD signaling. This study supports the hypothesis that plasma miRNA profiles could be used to identify individuals at high risk of organ-specific late radiation damage, with applications for radiation oncology clinical practice or in the context of a radiological incident.

]]>
<![CDATA[Adult chondrogenesis and spontaneous cartilage repair in the skate, <i>Leucoraja erinacea</i>]]> https://www.researchpad.co/article/elastic_article_8127 For our joints to move around freely, they are lubricated with cartilage. In growing mammals, this tissue is continuously made by the body. But, by adulthood, this cartilage will have been almost entirely replaced by bone. It is also difficult for adult bodies to replenish what cartilage does remain – such as that in the joints.

When growing new cartilage, the body uses so-called progenitor cells, which have the ability to turn into different cell types. Progenitor cells are recruited to the joints, where they transform into cartilage cells called chondrocytes, which generate new cartilage. But adults lack these progenitor cells, leaving them unfit to heal damaged cartilage after injury or diseases like osteoarthritis.

In contrast, certain groups of fishes, such as skates, sharks and rays, produce cartilage throughout their life — indeed their whole skeleton is made of cartilage. So, what is the difference between these cartilaginous fishes and mammals? Why can they generate cartilage throughout their lives, while humans are unable to? And does this mean that these adult fish are better at healing injured cartilage?

Marconi et al. used skates (Leucoraja erinacea) to study how cartilage develops, grows and heals in a cartilaginous fish. Progenitor cells were found in a layer that wraps around the cartilage skeleton (called the perichondrium). These cells were also shown to activate genes that control cartilage development. By labelling these progenitor cells, their presence and movements could be tracked around the fish. Marconi et al. found progenitor cells in adult skates that were able to generate chondrocytes. Skates were also shown to spontaneously repair damaged cartilage in experiments where cartilage was injured.

Marconi et al. have identified the skate as a new animal model for studying cartilage growth and repair. Studying the mechanisms that skate progenitor cells use for generating cartilage could lead to improvements in current therapies used for repairing cartilage in the joints.

]]>