ResearchPad - Electrochemistry https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Combining scaling relationships overcomes rate versus overpotential trade-offs in O2 molecular electrocatalysis]]> https://www.researchpad.co/product?articleinfo=N6c72793c-7f33-4ab7-9a0d-e04d5d8e06b4

Combining two scaling relationships shows how to improve advanced electrochemical energy conversion catalysis.

]]>
<![CDATA[Alternating Current Electrolysis for the Electrocatalytic Synthesis of Mixed Disulfide via Sulfur–Sulfur Bond Metathesis towards Dynamic Disulfide Libraries]]> https://www.researchpad.co/product?articleinfo=Ncebbd44c-03a1-4dc8-88bf-9fe8c0295aa6

Abstract

A novel approach of electrolysis using alternating current was applied in the sulfur–sulfur bond metathesis of symmetrical disulfides towards unsymmetrical disulfides. As initially expected, a statistical distribution in disulfides was obtained. Furthermore, the influence of electrode polarisation by alternating current was investigated on a two‐disulfide matrix. The highly dynamic nature of this chemistry resulted in the creation of dynamic disulfide libraries by expansion of the matrices, consisting of up to six symmetrical disulfides. In addition, mixing of matrices and stepwise expanding of a matrix by using alternating current electrolysis were realised.

]]>
<![CDATA[Amperometric biosensing system directly powered by button cell battery for lactate]]> https://www.researchpad.co/product?articleinfo=5c897724d5eed0c4847d2544

The development of new signal systems for electrical biosensors could provide exciting new opportunities for biomedical analysis, pollutant monitoring, and explosive detection. The signal systems for commercial portable sensors involve the integration of a battery and a circuit conditioning system to power an amperometric biosensor. However, this increases the size and complexity of the entire system. In this study, we develop a simple amperometric biosensor that is directly powered by a button cell battery for the detection of lactate. A two-electrode sensing transducer was printed on cardboard or integrated on a ring. It was directly powered by a button cell battery, and connected to a multimeter for current measurement. This sensor showed a sensitive detection range of 0.04762–9.21429 mM and short measuring time of 2 min. These results show that this system can achieve an excellent sensing performance, and the construction of this new sensing system directly powered by a button cell battery offers a new method for further developing a wide range of miniaturized, flexible, portable, or wearable sensing systems, and these could be used in detecting various analytes that are important in medical diagnosis and environmental monitoring.

]]>
<![CDATA[Comparison of two portable clinical analyzers to one stationary analyzer for the determination of blood gas partial pressures and blood electrolyte concentrations in horses]]> https://www.researchpad.co/product?articleinfo=5c70675bd5eed0c4847c6ef8

Portable blood gas analyzers are used to facilitate diagnosis and treatment of disorders related to disturbances of acid-base and electrolyte balance in the ambulatory care of equine patients. The aim of this study was to determine whether 2 portable analyzers produce results in agreement with a stationary analyzer. Blood samples from 23 horses hospitalized for various medical reasons were included in this prospective study. Blood gas analysis and electrolyte concentrations measured by the portable analyzers VetStat and epoc were compared to those produced by the cobas b 123 analyzer via concordance analysis, Passing-Bablok regression and Bland-Altman analysis. Limits of agreement indicated relevant bias between the VetStat and cobas b 123 for partial pressure of oxygen (pO2; 27.5–33.8 mmHg), sodium ([Na+]; 4.3–21.6 mmol/L) and chloride concentration ([Cl-]; 0.3–7.9 mmol/L) and between the epoc and cobas b 123 for pH (0.070–0.022), partial pressure of carbon dioxide (pCO2; 3.6–7.3 mmHg), pO2 (36.2–32.7 mmHg) and [Na+] (0.38.1 mmol/L). The VetStat analyzer yielded results that were in agreement with the cobas b 123 analyzer for determination of pH, pCO2, bicarbonate ([HCO3-]) and potassium concentration [K+], while the epoc analyzer achieved acceptable agreement for [HCO3-] and [K+]. The VetStat analyzer may be useful in performing blood gas analysis in equine samples but analysis of [Na+], [Cl-] and pO2 should be interpreted with caution. The epoc delivered reliable results for [HCO3-] and [K+], while results for pH, pCO2, pO2 and [Na+] should be interpreted with caution.

]]>
<![CDATA[Synthesis and characterizations of o-nitrochitosan based biopolymer electrolyte for electrochemical devices]]> https://www.researchpad.co/product?articleinfo=5c706761d5eed0c4847c6f87

For the past decade, much attention was focused on polysaccharide natural resources for various purposes. Throughout the works, several efforts were reported to prepare new function of chitosan by chemical modifications for renewable energy, such as fuel cell application. This paper focuses on synthesis of the chitosan derivative, namely, O-nitrochitosan which was synthesized at various compositions of sodium hydroxide and reacted with nitric acid fume. Its potential as biopolymer electrolytes was studied. The substitution of nitro group was analyzed by using Attenuated Total Reflectance Fourier Transform Infra-Red (ATR-FTIR) analysis, Nuclear Magnetic Resonance (NMR) and Elemental Analysis (CHNS). The structure was characterized by X-ray Diffraction (XRD) and its thermal properties were examined by using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Whereas, the ionic conductivity of the samples was analyzed by electrochemical impedance spectroscopy (EIS). From the IR spectrum results, the nitro group peaks of O-nitrochitosan, positioned at 1646 and 1355 cm-1, were clearly seen for all pH media. At pH 6, O-nitrochitosan exhibited the highest degree of substitution at 0.74 when analyzed by CHNS analysis and NMR further proved that C-6 of glucosamine ring was shifted to the higher field. However, the thermal stability and glass transition temperatures were decreased with acidic condition. The highest ionic conductivity of O-nitrochitosan was obtained at ~10−6 cm-1. Overall, the electrochemical property of new O-nitrochitosan showed a good improvement as compared to chitosan and other chitosan derivatives. Hence, O-nitrochitosan is a promising biopolymer electrolyte and has the potential to be applied in electrochemical devices.

]]>
<![CDATA[Synthesis of MnCo2O4 nanoparticles as modifiers for simultaneous determination of Pb(II) and Cd(II)]]> https://www.researchpad.co/product?articleinfo=5c648ce7d5eed0c484c81a65

The porous spinel oxide nanoparticles, MnCo2O4, were synthesized by citrate gel combustion technique. Morphology, crystallinity and Co/Mn content of modified electrode was characterized and determined by Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction pattern analysis (XRD), simultaneous thermogravimetry and differential thermal analysis (TG/DTA). Nanoparticles were used for modification of glassy carbon electrode (GCE) and new sensor was applied for simultaneous determination of Pb(II) and Cd(II) ions in water samples with the linear sweep anodic stripping voltammetry (LSASV).The factors such as pH, deposition potential and deposition time are optimized. Under optimal conditions the wide linear concentration range from 0.05 to 40 μmol/dm3was obtained for Pb(II), with limit of detection (LOD) of 8.06 nmol/dm3 and two linear concentration ranges were obtained for Cd(II), from 0.05 to 1.6 μmol/dm3 and from 1.6 to 40 μmol/dm3, with calculated LOD of 7.02 nmol/dm3. The selectivity of the new sensor was investigated in the presence of interfering ions. The sensor is stable and it gave reproducible results. The new sensor was succesfully applied on determination of heavy metals in natural waters.

]]>
<![CDATA[Aggregation and interfacial phenomenon of amphiphilic drug under the influence of pharmaceutical excipients (green/biocompatible gemini surfactant)]]> https://www.researchpad.co/product?articleinfo=5c648cbcd5eed0c484c81680

In the current study, we have examined the interaction amongst an antidepressant drug amitriptyline hydrochloride (AMH) and ethane-1, 2-diyl bis(N,N-dimethyl-N-cetylammoniumacetoxy) dichloride (16-E2-16, a green gemini surfactant) through tensiometric and fluorimetric techniques in aqueous/electrolyte/urea solutions. Significant variations are observed in the various evaluated parameters in the present study. Gemini 16-E2-16 has outstanding surface properties along with a much lower cmc value, demonstrating very little toxicity as well as considerable antimicrobial activity. The cmc values of mixtures decrease through increase in mole fraction (α1) of 16-E2-16, which specifies the nonideality of the solution mixtures, along with demonstrating the occurrence of mixed micellization too. Negative βRub values signify on the whole attractive force of interaction between constituents of mixed micelles. Owing to the incidence of electrolyte NaCl (50 mmol.kg–1), lowering of the micelles’ surface charge happens, resulting in aggregation taking place at lower concentration while the presence of urea (NH2CONH2) halts micellization taking place, which means the cmc value increases in the attendance of urea. The ΔGmo values for all systems were negative along with the presence of electrolyte/urea. The excess free energy (Gex) of studied mixed systems was also estimated and found to be negative for all the systems. Using the fluorescence quenching method, the micelle aggregation number (Nagg) was evaluated and it was found that the contribution of gemini surfactant was always more than that of the AMH and their value enhances in the existence of electrolyte while decreasing in the attendance of NH2CONH2 in the system. In addition, other fluorescence parameters such as micropolarity (I1/I3), dielectric constant (Dexp) as well as Stern–Volmer binding constants (Ksv) of mixed systems were evaluated and the results showed the synergistic performance of the AMH + 16-E2-16 mixtures. Along with tensiometric and fluorimetric techniques, FT-IR spectroscopy was also engaged to reveal the interaction among constituents.

]]>
<![CDATA[Patterns of muscle coordination during dynamic glenohumeral joint elevation: An EMG study]]> https://www.researchpad.co/product?articleinfo=5c6730d6d5eed0c484f381e4

The shoulder relies heavily on coordinated muscle activity for normal function owing to its limited osseous constraint. However, previous studies have failed to examine the sophisticated interrelationship between all muscles. It is essential for these normal relationships to be defined as a basis for understanding pathology. Therefore, the primary aim of the study was to investigate shoulder inter-muscular coordination during different planes of shoulder elevation. Twenty healthy subjects were included. Electromyography was recorded from 14 shoulder girdle muscles as subjects performed shoulder flexion, scapula plane elevation, abduction and extension. Cross-correlation was used to examine the coordination between different muscles and muscle groups. Significantly higher coordination existed between the rotator cuff and deltoid muscle groups during the initial (Pearson Correlation Coefficient (PCC) = 0.79) and final (PCC = 0.74) stages of shoulder elevation compared to the mid-range (PCC = 0.34) (p = 0.020–0.035). Coordination between the deltoid and a functional adducting group comprising the latissimus dorsi and teres major was particularly high (PCC = 0.89) during early shoulder elevation. The destabilising force of the deltoid, during the initial stage of shoulder elevation, is balanced by the coordinated activity of the rotator cuff, latissimus dorsi and teres major. Stability requirements are lower during the mid-range of elevation. At the end-range of movement the demand for muscular stability again increases and higher coordination is seen between the deltoid and rotator cuff muscle groups. It is proposed that by appreciating the sophistication of normal shoulder function targeted evidence-based rehabilitation strategies for conditions such as subacromial impingement syndrome or shoulder instability can be developed.

]]>
<![CDATA[Cell type-specific differences in redox regulation and proliferation after low UVA doses]]> https://www.researchpad.co/product?articleinfo=5c57e6d0d5eed0c484ef3ec4

Ultraviolet A (UVA) radiation is harmful for living organisms but in low doses may stimulate cell proliferation. Our aim was to examine the relationships between exposure to different low UVA doses, cellular proliferation, and changes in cellular reactive oxygen species levels. In human colon cancer (HCT116) and melanoma (Me45) cells exposed to UVA doses comparable to environmental, the highest doses (30–50 kJ/m2) reduced clonogenic potential but some lower doses (1 and 10 kJ/m2) induced proliferation. This effect was cell type and dose specific. In both cell lines the levels of reactive oxygen species and nitric oxide fluctuated with dynamics which were influenced differently by UVA; in Me45 cells decreased proliferation accompanied the changes in the dynamics of H2O2 while in HCT116 cells those of superoxide. Genes coding for proteins engaged in redox systems were expressed differently in each cell line; transcripts for thioredoxin, peroxiredoxin and glutathione peroxidase showed higher expression in HCT116 cells whereas those for glutathione transferases and copper chaperone were more abundant in Me45 cells. We conclude that these two cell types utilize different pathways for regulating their redox status. Many mechanisms engaged in maintaining cellular redox balance have been described. Here we show that the different cellular responses to a stimulus such as a specific dose of UVA may be consequences of the use of different redox control pathways. Assays of superoxide and hydrogen peroxide level changes after exposure to UVA may clarify mechanisms of cellular redox regulation and help in understanding responses to stressing factors.

]]>
<![CDATA[Determinants of corrosion resistance of Ti-6Al-4V alloy dental implants in an In Vitro model of peri-implant inflammation]]> https://www.researchpad.co/product?articleinfo=5c5ca287d5eed0c48441e57d

Background

Titanium (Ti) and its alloys possess high biocompatibility and corrosion resistance due to Ti ability to form a passive oxide film, i.e. TiO2, immediately after contact with oxygen. This passive layer is considered stable during function in the oral cavity, however, emerging information associate inflammatory peri-implantitis to vast increases in Ti corrosion products around diseased implants as compared to healthy ones. Thus, it is imperative to identify which factors in the peri-implant micro-environment may reduce Ti corrosion resistance.

Methods

The aim of this work is to simulate peri-implant inflammatory conditions in vitro to determine which factors affect corrosion susceptibility of Ti-6Al-4V dental implants. The effects of hydrogen peroxide (surrogate for reactive oxygen species, ROS, found during inflammation), albumin (a protein typical of physiological fluids), deaeration (to simulate reduced pO2 conditions during inflammation), in an acidic environment (pH 3), which is typical of inflammation condition, were investigated. Corrosion resistance of Ti-6Al-4V clinically-relevant acid etched surfaces was investigated by electrochemical techniques: Open Circuit Potential; Electrochemical Impedance Spectroscopy; and Anodic Polarization.

Results

Electrochemical tests confirmed that most aggressive conditions to the Ti-6Al-4V alloy were those typical of occluded cells, i.e. oxidizing conditions (H2O2), in the presence of protein and deaeration of the physiological medium.

Conclusions

Our results provide evidence that titanium’s corrosion resistance can be reduced by intense inflammatory conditions. This observation indicates that the micro-environment to which the implant is exposed during peri-implant inflammation is highly aggressive and may lead to TiO2 passive layer attack. Further investigation of the effect of these aggressive conditions on titanium dissolution is warranted.

]]>
<![CDATA[Attentional modulation of orthographic neighborhood effects during reading: Evidence from event-related brain potentials in a psychological refractory period paradigm]]> https://www.researchpad.co/product?articleinfo=5c644944d5eed0c484c2f97c

It is often assumed that word reading proceeds automatically. Here, we tested this assumption by recording event-related potentials during a psychological refractory period (PRP) paradigm, requiring lexical decisions about written words. Specifically, we selected words differing in their orthographic neighborhood size–the number of words that can be obtained from a target by exchanging a single letter–and investigated how influences of this variable depend on the availability of central attention. As expected, when attentional resources for lexical decisions were unconstrained, words with many orthographic neighbors elicited larger N400 amplitudes than those with few neighbors. However, under conditions of high temporal overlap with a high priority primary task, the N400 effect was not statistically different from zero. This finding indicates strong attentional influences on processes sensitive to orthographic neighbors during word reading, providing novel evidence against the full automaticity of processes involved in word reading. Furthermore, in conjunction with the observation of an underadditive interaction between stimulus onset asynchrony (SOA) and orthographic neighborhood size in lexical decision performance, commonly taken to indicate automaticity, our results raise issues concerning the standard logic of cognitive slack in the PRP paradigm.

]]>
<![CDATA[Towards an understanding of C9orf82 protein/CAAP1 function]]> https://www.researchpad.co/product?articleinfo=5c40f79cd5eed0c484386488

C9orf82 protein, or conserved anti-apoptotic protein 1 or caspase activity and apoptosis inhibitor 1 (CAAP1) has been implicated as a negative regulator of the intrinsic apoptosis pathway by modulating caspase expression and activity. In contrast, an independent genome wide screen for factors capable of driving drug resistance to the topoisomerase II (Topo II) poisons doxorubicin and etoposide, implicated a role for the nuclear protein C9orf82 in delaying DSBs repair downstream of Topo II, hereby sensitizing cells to DSB induced apoptosis. To determine its function in a genetically defined setting in vivo and ex vivo, we here employed CRISPR/Cas9 technology in zygotes to generate a C9orf82 knockout mouse model. C9orf82ko/ko mice were born at a Mendelian ratio and did not display any overt macroscopic or histological abnormalities. DSBs repair dependent processes like lymphocyte development and class switch recombination (CSR) appeared normal, arguing against a link between the C9orf82 encoded protein and V(D)J recombination or CSR. Most relevant, primary pre-B cell cultures and Tp53 transformed mouse embryo fibroblasts (MEFs) derived from C9orf82ko/ko E14.5 and wild type embryos displayed comparable sensitivity to a number of DNA lesions, including DSBs breaks induced by the topoisomerase II inhibitors, etoposide and doxorubicin. Likewise, the kinetics of γH2AX formation and resolution in response to etoposide of C9orf82 protein proficient, deficient and overexpressing MEFs were indistinguishable. These data argue against a direct role of C9orf82 protein in delaying repair of Topo II generated DSBs and regulating apoptosis. The genetically defined systems generated in this study will be of value to determine the actual function of C9orf82 protein.

]]>
<![CDATA[CRISPR-Cas9 In Situ engineering of subtilisin E in Bacillus subtilis]]> https://www.researchpad.co/product?articleinfo=5c3d0133d5eed0c48403922d

CRISPR-Cas systems have become widely used across all fields of biology as a genome engineering tool. With its recent demonstration in the Gram positive industrial workhorse Bacillus subtilis, this tool has become an attractive option for rapid, markerless strain engineering of industrial production hosts. Previously described strategies for CRISPR-Cas9 genome editing in B. subtilis have involved chromosomal integrations of Cas9 and single guide RNA expression cassettes, or construction of large plasmids for simultaneous transformation of both single guide RNA and donor DNA. Here we use a flexible, co-transformation approach where the single guide RNA is inserted in a plasmid for Cas9 co-expression, and the donor DNA is supplied as a linear PCR product observing an editing efficiency of 76%. This allowed multiple, rapid rounds of in situ editing of the subtilisin E gene to incorporate a salt bridge triad present in the Bacillus clausii thermotolerant homolog, M-protease. A novel subtilisin E variant was obtained with increased thermotolerance and activity.

]]>
<![CDATA[Constraints-based analysis identifies NAD+ recycling through metabolic reprogramming in antibiotic resistant Chromobacterium violaceum]]> https://www.researchpad.co/product?articleinfo=5c390bbed5eed0c48491e192

In the post genomic era, high throughput data augment stoichiometric flux balance models to compute accurate metabolic flux states, growth and energy phenotypes. Investigating altered metabolism in the context of evolved resistant genotypes potentially provide simple strategies to overcome drug resistance and induce susceptibility to existing antibiotics. A genome-scale metabolic model (GSMM) for Chromobacterium violaceum, an opportunistic human pathogen, was reconstructed using legacy data. Experimental constraints were used to represent antibiotic susceptible and resistant populations. Model predictions were validated using growth and respiration data successfully. Differential flux distribution and metabolic reprogramming were identified as a response to antibiotics, chloramphenicol and streptomycin. Streptomycin resistant populations (StrpR) redirected tricarboxylic acid (TCA) cycle flux through the glyoxylate shunt. Chloramphenicol resistant populations (ChlR) resorted to overflow metabolism producing acetate and formate. This switch to fermentative metabolism is potentially through excess reducing equivalents and increased NADH/NAD ratios. Reduced proton gradients and changed Proton Motive Force (PMF) induced by antibiotics were also predicted and verified experimentally using flow cytometry based membrane potential measurements. Pareto analysis of NADH and ATP maintenance showed the decoupling of electron transfer and ATP synthesis in StrpR. Redox homeostasis and NAD+ cycling through rewiring metabolic flux was implicated in re-sensitizing antibiotic resistant C. violaceum. These approaches can be used to probe metabolic vulnerabilities of resistant pathogens. On the verge of a post-antibiotic era, we foresee a critical need for systems level understanding of pathogens and host interaction to extend shelf life of antibiotics and strategize novel therapies.

]]>
<![CDATA[Differential recordings of local field potential: A genuine tool to quantify functional connectivity]]> https://www.researchpad.co/product?articleinfo=5c2d2ea9d5eed0c484d9af66

Local field potential (LFP) recording is a very useful electrophysiological method to study brain processes. However, this method is criticized for recording low frequency activity in a large area of extracellular space potentially contaminated by distal activity. Here, we theoretically and experimentally compare ground-referenced (RR) with differential recordings (DR). We analyze electrical activity in the rat cortex with these two methods. Compared with RR, DR reveals the importance of local phasic oscillatory activities and their coherence between cortical areas. Finally, we show that DR provides a more faithful assessment of functional connectivity caused by an increase in the signal to noise ratio, and of the delay in the propagation of information between two cortical structures.

]]>
<![CDATA[Physiological relevance of epithelial geometry: New insights into the standing gradient model and the role of LI cadherin]]> https://www.researchpad.co/product?articleinfo=5c26976dd5eed0c48470f804

We introduce a mathematical model of an absorbing leaky epithelium to reconsider the problem formulated by Diamond and Bossert in 1967: whether “… some distinctive physiological properties of epithelia might arise as geometrical consequences of epithelial ultrastructure”. A standing gradient model of the intercellular cleft (IC) is presented that includes tight junctions (TJ) and ion channels uniformly distributed along the whole cleft. This nonlinear system has an intrinsic homogeneous concentration and the spatial scale necessary to establish it along the cleft. These parameters have not been elucidated so far. We further provide non-perturbative analytical approximations for a broad range of parameters. We found that narrowing of the IC increases ion concentration dramatically and can therefore prevent outflow through tight junctions (TJs) and the lateral membrane, as long as extremely high luminal osmolarities are not reached. Our model predicts that the system is to some extent self-regulating and thereby prevents fluxes into the lumen. Recent experimental evidence has shown that liver-intestine (LI) cadherin can control the up/down flux in intestines via regulation of the cleft width. This finding is in full agreement with predictions of our model. We suggest that LI-cadherin may increase water transport through epithelia via sequential narrowing of the cleft, starting from the highest concentration area at the beginning of the cleft and triggering a propagating squeezing motion.

]]>
<![CDATA[Compartment models for the electrical stimulation of retinal bipolar cells]]> https://www.researchpad.co/product?articleinfo=5c215132d5eed0c4843f91fe

Bipolar cells of the retina are among the smallest neurons of the nervous system. For this reason, compared to other neurons, their delay in signaling is minimal. Additionally, the small bipolar cell surface combined with the low membrane conductance causes very little attenuation in the signal from synaptic input to the terminal. The existence of spiking bipolar cells was proven over the last two decades, but until now no complete model including all important ion channel types was published. The present study amends this and analyzes the impact of the number of model compartments on simulation accuracy. Characteristic features like membrane voltages and spike generation were tested and compared for one-, two-, four- and 117-compartment models of a macaque bipolar cell. Although results were independent of the compartment number for low membrane conductances (passive membranes), nonlinear regimes such as spiking required at least a separate axon compartment. At least a four compartment model containing the functionally different segments dendrite, soma, axon and terminal was needed for understanding signaling in spiking bipolar cells. Whereas for intracellular current application models with small numbers of compartments showed quantitatively correct results in many cases, the cell response to extracellular stimulation is sensitive to spatial variation of the electric field and accurate modeling therefore demands for a large number of short compartments even for passive membranes.

]]>
<![CDATA[Two-stage motion artefact reduction algorithm for electrocardiogram using weighted adaptive noise cancelling and recursive Hampel filter]]> https://www.researchpad.co/product?articleinfo=5bfdb380d5eed0c4845c9fc3

The presence of motion artefacts in ECG signals can cause misleading interpretation of cardiovascular status. Recently, reducing the motion artefact from ECG signal has gained the interest of many researchers. Due to the overlapping nature of the motion artefact with the ECG signal, it is difficult to reduce motion artefact without distorting the original ECG signal. However, the application of an adaptive noise canceler has shown that it is effective in reducing motion artefacts if the appropriate noise reference that is correlated with the noise in the ECG signal is available. Unfortunately, the noise reference is not always correlated with motion artefact. Consequently, filtering with such a noise reference may lead to contaminating the ECG signal. In this paper, a two-stage filtering motion artefact reduction algorithm is proposed. In the algorithm, two methods are proposed, each of which works in one stage. The weighted adaptive noise filtering method (WAF) is proposed for the first stage. The acceleration derivative is used as motion artefact reference and the Pearson correlation coefficient between acceleration and ECG signal is used as a weighting factor. In the second stage, a recursive Hampel filter-based estimation method (RHFBE) is proposed for estimating the ECG signal segments, based on the spatial correlation of the ECG segment component that is obtained from successive ECG signals. Real-World dataset is used to evaluate the effectiveness of the proposed methods compared to the conventional adaptive filter. The results show a promising enhancement in terms of reducing motion artefacts from the ECG signals recorded by a cost-effective single lead ECG sensor during several activities of different subjects.

]]>
<![CDATA[Effects of the inspiratory muscle training and aerobic training on respiratory and functional parameters, inflammatory biomarkers, redox status and quality of life in hemodialysis patients: A randomized clinical trial]]> https://www.researchpad.co/product?articleinfo=5b69466a463d7e3867f4ad0c

Objective

Evaluate and compare the isolated and combined effects of Inspiratory Muscle Training (IMT) and Aerobic Training (AT) on respiratory and functional parameters, inflamatory biomarkers, redox status and health-related quality of life (HRQoL) in hemodialysis patients.

Methods

A randomised controlled trial with factorial allocation and intention-to-treat analysis was performed in hemodialysis patients. Volunteers were randomly assigned to performe 8-weeks of IMT at 50% of maximal inspiratory pressure (MIP), low intensity AT or combined training (CT). Before the interventions, all the volunteers went 8-weeks through a control period (without training). Measures are taken at baseline, 8-week (after control period) and 16-week (after the interventions). Primary outcomes were functional capacity (incremental shuttle walk test), MIP and lower limbs strength (Sit-to-Stand test of 30 seconds). Plasma levels of interleukin-6 (IL-6), soluble tumor necrosis factor receptor 1 (sTNFR1) and 2 (sTNFR2), adiponectin, resistin and leptin, redox status parameters and HRQoL (KDQOL-SF questionnaire) were the scondary outcomes. Data analyses were performed by two-way repeated measurements ANOVA.

Results

37 hemodialysis patients aged 48.2 years old (IC95% 43.2–54.7) were randomized. Increase of MIP, functional capacity, lower limbs strength and resistin levels, and reduction of sTNFR2 levels in 16-week, compared to baseline and 8-week, were observed in all the groups (p<0.001). IMT improved functional capacity, MIP and lower limbs strength in 96.7m (IC95% 5.6–189.9), 34.5cmH2O (IC95% 22.4–46.7) and 2.2repetitions (IC95% 1.1–3.2) respectively. Increase in resistin leves and reduction in sTNFR2 leves after IMT was 0.8ng/dL (IC95% 0.5–1.1) and 0.8ng/dL (IC95% 0.3–1.3), respectively, without between-group differences. Compared to baseline and 8-week, adiponectin levels (p<0.001) and fatigue domain of the HRQoL (p<0.05) increased in 16-week only in CT.

Conclusion

IMT, AT and CT improved functional parameters and modulated inflammatory biomarkers, in addition, IMT provoked a similar response to low intensity AT in hemodialysis patients.

Trial registration

Registro Brasileiro de Ensaios clínicos RBR-4hv9rs.

]]>
<![CDATA[Synthetic Mimics of Bacterial Lipid A Trigger Optical Transitions in Liquid Crystal Microdroplets at Ultralow Picogram-per-Milliliter Concentrations]]> https://www.researchpad.co/product?articleinfo=5bd1062a40307c3a2d10f8c9

la-2015-035577_0005.jpg

We report synthetic six-tailed mimics of the bacterial glycolipid Lipid A that trigger changes in the internal ordering of water-dispersed liquid crystal (LC) microdroplets at ultralow (picogram-per-milliliter) concentrations. These molecules represent the first class of synthetic amphiphiles to mimic the ability of Lipid A and bacterial endotoxins to trigger optical responses in LC droplets at these ultralow concentrations. This behavior stands in contrast to all previously reported synthetic surfactants and lipids, which require near-complete monolayer coverage at the LC droplet surface to trigger ordering transitions. Surface-pressure measurements and SAXS experiments reveal these six-tailed synthetic amphiphiles to mimic key aspects of the self-assembly of Lipid A at aqueous interfaces and in solution. These and other results suggest that these amphiphiles trigger orientational transitions at ultralow concentrations through a unique mechanism that is similar to that of Lipid A and involves formation of inverted self-associated nanostructures at topological defects in the LC droplets.

]]>