ResearchPad - Experimental and Cognitive Psychology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Testing Mean Differences among Groups: Multivariate and Repeated Measures Analysis with Minimal Assumptions]]> https://www.researchpad.co/product?articleinfo=5b598600463d7e76cf8ed8a6

ABSTRACT

To date, there is a lack of satisfactory inferential techniques for the analysis of multivariate data in factorial designs, when only minimal assumptions on the data can be made. Presently available methods are limited to very particular study designs or assume either multivariate normality or equal covariance matrices across groups, or they do not allow for an assessment of the interaction effects across within-subjects and between-subjects variables. We propose and methodologically validate a parametric bootstrap approach that does not suffer from any of the above limitations, and thus provides a rather general and comprehensive methodological route to inference for multivariate and repeated measures data. As an example application, we consider data from two different Alzheimer’s disease (AD) examination modalities that may be used for precise and early diagnosis, namely, single-photon emission computed tomography (SPECT) and electroencephalogram (EEG). These data violate the assumptions of classical multivariate methods, and indeed classical methods would not have yielded the same conclusions with regards to some of the factors involved.

]]>
<![CDATA[Sleep deprivation affects fear memory consolidation: bi-stable amygdala connectivity with insula and ventromedial prefrontal cortex]]> https://www.researchpad.co/product?articleinfo=5bf969a1d5eed0c4842eca18

Abstract

Sleep plays an important role for successful fear memory consolidation. Growing evidence suggests that sleep disturbances might contribute to the development and the maintenance of posttraumatic stress disorder (PTSD), a disorders characterized by dysregulations in fear learning mechanisms, as well as exaggerated arousal and salience processing. Against this background, the present study examined the effects of sleep deprivation (SD) on the acquisition of fear and the subsequent neural consolidation. To this end, the present study assessed fear acquisition and associated changes in fMRI-based amygdala-functional connectivity following 24 h of SD. Relative to non-sleep deprived controls, SD subjects demonstrated increased fear ratings and skin conductance responses (SCR) during fear acquisition. During fear consolidation SD inhibited increased amygdala-ventromendial prefrontal cortex (vmPFC) connectivity and concomitantly increased changes in amygdala-insula connectivity. Importantly, whereas in controls fear indices during acquisition were negatively associated with amygdala-vmPFC connectivity during consolidation, fear indices were positively associated with amygdala-insula coupling following SD. Together the findings suggest that SD may interfere with vmPFC control of the amygdala and increase bottom-up arousal signaling in the amygdala-insula pathway during fear consolidation, which might mediate the negative impact of sleep disturbances on PSTD symptomatology.

]]>
<![CDATA[Relating experimentally-induced fear to pre-existing phobic fear in the human brain]]> https://www.researchpad.co/product?articleinfo=5bf969a5d5eed0c4842ecb79

Abstract

While prior work has demonstrated that fear-conditioning changes the neural representation of previously neutral stimuli, it remains unknown to what extent this new representation abstracts away from specific fears and which brain areas are involved therein. To investigate this question, we sought commonalities between experimentally-induced fear via electric shocks and pre-existing phobia. Using functional MRI, we tested the effect of fear-conditioning pictures of dogs in 21 spider-fearful participants across three phases: baseline, post-conditioning, and extinction. Considering phobic stimuli as a reference point for the state of fear allowed us to examine whether fear-conditioning renders information patterns of previously neutral stimuli more similar to those of phobic stimuli. We trained a classification algorithm to discriminate information patterns of neutral stimuli (rats) and phobic stimuli and then tested the algorithm on information patterns from the conditioned stimuli (dogs). Performing this cross-decoding analysis at each experimental phase revealed brain regions in which dogs were classified as rats during baseline, as spiders following conditioning, and again as rats after extinction. A follow-up analysis showed that changes in visual perception information cannot explain the changing classification performance. These results demonstrate a common neural representation for processing fear-eliciting information, either pre-existing or acquired by classical conditioning.

]]>
<![CDATA[Aging is associated with a prefrontal lateral-medial shift during picture-induced negative affect]]> https://www.researchpad.co/product?articleinfo=5bf969a3d5eed0c4842ecad7

Abstract

The capacity to adaptively respond to negative emotion is in part dependent upon lateral areas of the prefrontal cortex (PFC). Lateral PFC areas are particularly susceptible to age-related atrophy, which affects executive function (EF). We used structural and functional magnetic resonance imaging (MRI) to test the hypothesis that older age is associated with greater medial PFC engagement during processing of negative information, and that this engagement is dependent upon the integrity of grey matter structure in lateral PFC as well as EF. Participants (n = 64, 38–79 years) viewed negative and neutral scenes while in the scanner, and completed cognitive tests as part of a larger study. Grey matter probability (GMP) was computed to index grey matter integrity. FMRI data demonstrated less activity in the left ventrolateral PFC (VLPFC) and greater ventromedial PFC (VMPFC) activity with increasing age during negative-picture viewing. Age did not correlate with amygdala responding. GMP in VLPFC and EF were negatively associated with VMPFC activity. We conclude that this change from lateral to medial PFC engagement in response to picture-induced negative affect reflects decreased reliance on executive function-related processes, possibly associated with reduced grey matter in lateral PFC, with advancing age to maintain emotional functioning.

]]>
<![CDATA[Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals]]> https://www.researchpad.co/product?articleinfo=5bf9699ad5eed0c4842ec776

Abstract

The personality dimensions of neuroticism and extraversion are strongly associated with emotional experience and affective disorders. Previous studies reported functional magnetic resonance imaging (fMRI) activity correlates of these traits, but no study has used brain-based measures to predict them. Here, using a fully cross-validated approach, we predict novel individuals’ neuroticism and extraversion from functional connectivity (FC) data observed as they simply rested during fMRI scanning. We applied a data-driven technique, connectome-based predictive modeling (CPM), to resting-state FC data and neuroticism and extraversion scores (self-reported NEO Five Factor Inventory) from 114 participants of the Nathan Kline Institute Rockland sample. After dividing the whole brain into 268 nodes using a predefined functional atlas, we defined each individual’s FC matrix as the set of correlations between the activity timecourses of every pair of nodes. CPM identified networks consisting of functional connections correlated with neuroticism and extraversion scores, and used strength in these networks to predict a left-out individual’s scores. CPM predicted neuroticism and extraversion in novel individuals, demonstrating that patterns in resting-state FC reveal trait-level measures of personality. CPM also revealed predictive networks that exhibit some anatomical patterns consistent with past studies and potential new brain areas of interest in personality.

]]>
<![CDATA[Normal aging and Parkinson's disease are associated with the functional decline of distinct frontal-striatal circuits]]> https://www.researchpad.co/product?articleinfo=5b41c07e463d7e0c4367c32c

Impaired ability to shift attention between stimuli (i.e. shifting attentional ‘set’) is a well-established part of the dysexecutive syndrome in Parkinson's Disease (PD), nevertheless cognitive and neural bases of this deficit remain unclear. In this study, an fMRI-optimised variant of a classic paradigm for assessing attentional control (Hampshire and Owen 2006) was used to contrast activity in dissociable executive circuits in early-stage PD patients and controls. The results demonstrated that the neural basis of the executive performance impairments in PD is accompanied by hypoactivation within the striatum, anterior cingulate cortex (vACC), and inferior frontal sulcus (IFS) regions. By contrast, in aging it is associated with hypoactivation of the anterior insula/inferior frontal operculum (AI/FO) and the pre-supplementary motor area (preSMA). Between group behavioural differences were also observed; whereas normally aging individuals exhibited routine-problem solving deficits, PD patients demonstrated more global task learning deficits. These findings concur with recent research demonstrating model-based reinforcement learning deficits in PD and provide evidence that the AI/FO and IFS circuits are differentially impacted by PD and normal aging.

]]>
<![CDATA[Local but not long-range microstructural differences of the ventral temporal cortex in developmental prosopagnosia]]> https://www.researchpad.co/product?articleinfo=5bc4def240307c7a1d4e9f51

Individuals with developmental prosopagnosia (DP) experience face recognition impairments despite normal intellect and low-level vision and no history of brain damage. Prior studies using diffusion tensor imaging in small samples of subjects with DP (n=6 or n=8) offer conflicting views on the neurobiological bases for DP, with one suggesting white matter differences in two major long-range tracts running through the temporal cortex, and another suggesting white matter differences confined to fibers local to ventral temporal face-specific functional regions of interest (fROIs) in the fusiform gyrus. Here, we address these inconsistent findings using a comprehensive set of analyzes in a sample of DP subjects larger than both prior studies combined (n=16). While we found no microstructural differences in long-range tracts between DP and age-matched control participants, we found differences local to face-specific fROIs, and relationships between these microstructural measures with face recognition ability. We conclude that subtle differences in local rather than long-range tracts in the ventral temporal lobe are more likely associated with developmental prosopagnosia.

]]>
<![CDATA[Correlational structure of ‘frontal’ tests and intelligence tests indicates two components with asymmetrical neurostructural correlates in old age]]> https://www.researchpad.co/product?articleinfo=5ba727c440307c711344fed9

Both general fluid intelligence (gf) and performance on some ‘frontal tests’ of cognition decline with age. Both types of ability are at least partially dependent on the integrity of the frontal lobes, which also deteriorate with age. Overlap between these two methods of assessing complex cognition in older age remains unclear. Such overlap could be investigated using inter-test correlations alone, as in previous studies, but this would be enhanced by ascertaining whether frontal test performance and gf share neurobiological variance. To this end, we examined relationships between gf and 6 frontal tests (Tower, Self-Ordered Pointing, Simon, Moral Dilemmas, Reversal Learning and Faux Pas tests) in 90 healthy males, aged ~ 73 years. We interpreted their correlational structure using principal component analysis, and in relation to MRI-derived regional frontal lobe volumes (relative to maximal healthy brain size). gf correlated significantly and positively (.24 ≤ r ≤ .53) with the majority of frontal test scores. Some frontal test scores also exhibited shared variance after controlling for gf. Principal component analysis of test scores identified units of gf-common and gf-independent variance. The former was associated with variance in the left dorsolateral (DL) and anterior cingulate (AC) regions, and the latter with variance in the right DL and AC regions. Thus, we identify two biologically-meaningful components of variance in complex cognitive performance in older age and suggest that age-related changes to DL and AC have the greatest cognitive impact.

]]>
<![CDATA[Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity]]> https://www.researchpad.co/product?articleinfo=5ba727c240307c711344fed8

Intelligence and creativity are known to be correlated constructs suggesting that they share a common cognitive basis. The present study assessed three specific executive abilities – updating, shifting, and inhibition – and examined their common and differential relations to fluid intelligence and creativity (i.e., divergent thinking ability) within a latent variable model approach. Additionally, it was tested whether the correlation of fluid intelligence and creativity can be explained by a common executive involvement. As expected, fluid intelligence was strongly predicted by updating, but not by shifting or inhibition. Creativity was predicted by updating and inhibition, but not by shifting. Moreover, updating (and the personality factor openness) was found to explain a relevant part of the shared variance between intelligence and creativity. The findings provide direct support for the executive involvement in creative thought and shed further light on the functional relationship between intelligence and creativity.

]]>
<![CDATA[Religiosity is negatively associated with later-life intelligence, but not with age-related cognitive decline]]> https://www.researchpad.co/product?articleinfo=5ba727c040307c711344fed7

A well-replicated finding in the psychological literature is the negative correlation between religiosity and intelligence. However, several studies also conclude that one form of religiosity, church attendance, is protective against later-life cognitive decline. No effects of religious belief per se on cognitive decline have been found, potentially due to the restricted measures of belief used in previous studies. Here, we examined the associations between religiosity, intelligence, and cognitive change in a cohort of individuals (initial n = 550) with high-quality measures of religious belief taken at age 83 and multiple cognitive measures taken in childhood and at four waves between age 79 and 90. We found that religious belief, but not attendance, was negatively related to intelligence. The effect size was smaller than in previous studies of younger participants. Longitudinal analyses showed no effect of either religious belief or attendance on cognitive change either from childhood to old age, or across the ninth decade of life. We discuss differences between our cohort and those in previous studies – including in age and location – that may have led to our non-replication of the association between religious attendance and cognitive decline.

]]>
<![CDATA[Implicit action encoding influences personal-trait judgments]]> https://www.researchpad.co/product?articleinfo=5b7d2071463d7e41c2f5ebc2

When an observed action (e.g., kicking) is compatible to a to be produced action (e.g., a foot-key response as compared to a finger-key response), then the self-produced action is more fluent, that is, it is more accurate and faster. A series of experiments explore the notion that vision–action compatibility effects can influence personal-trait judgments. It is demonstrated that when an observed individual carries out an action that is compatible with the participants’ response, (1) this individual is identified more fluently, and (2) the observed individual’s personality is attributed with the properties of the observed action. For example, if it is easier to identify one individual with a foot-response when he is seen kicking a ball, as compared to typing, he is perceived to be more ‘sporty’. In contrast, if it is easier to identify one individual with a finger response when he is seen typing as compared to kicking a ball, he is associated with the ‘academic’ trait. These personal-trait judgment effects can be observed with explicit measures, where participants are asked to rate the sporty/academic nature of the person on a scale. They are also obtained when implicit measures are taken in a priming task, where participants are never explicitly asked to rate the personalities of the individuals. A control experiment rules out that these personal-trait effects are merely due to an association of motor responses (foot, finger) to individuals while identifying them, but that these effects depend on a prior manipulation of vision–action fluency.

]]>
<![CDATA[How social interactions affect emotional memory accuracy: Evidence from collaborative retrieval and social contagion paradigms]]> https://www.researchpad.co/product?articleinfo=5b0085e4463d7e38d2af87d3

In daily life, emotional events are often discussed with others. The influence of these social interactions on the veracity of emotional memories has rarely been investigated. The authors (Choi, Kensinger, & Rajaram Memory and Cognition, 41, 403–415, 2013) previously demonstrated that when the categorical relatedness of information is controlled, emotional items are more accurately remembered than neutral items. The present study examined whether emotion would continue to improve the accuracy of memory when individuals discussed the emotional and neutral events with others. Two different paradigms involving social influences were used to investigate this question and compare evidence. In both paradigms, participants studied stimuli that were grouped into conceptual categories of positive (e.g., celebration), negative (e.g., funeral), or neutral (e.g., astronomy) valence. After a 48-hour delay, recognition memory was tested for studied items and categorically related lures. In the first paradigm, recognition accuracy was compared when memory was tested individually or in a collaborative triad. In the second paradigm, recognition accuracy was compared when a prior retrieval session had occurred individually or with a confederate who supplied categorically related lures. In both of these paradigms, emotional stimuli were remembered more accurately than were neutral stimuli, and this pattern was preserved when social interaction occurred. In fact, in the first paradigm, there was a trend for collaboration to increase the beneficial effect of emotion on memory accuracy, and in the second paradigm, emotional lures were significantly less susceptible to the “social contagion” effect. Together, these results demonstrate that emotional memories can be more accurate than nonemotional ones even when events are discussed with others (Experiment 1) and even when that discussion introduces misinformation (Experiment 2).

]]>
<![CDATA[Visual short-term memory binding deficit in familial Alzheimer's disease]]> https://www.researchpad.co/product?articleinfo=5afd8443463d7e765406c588

Long-term episodic memory deficits in Alzheimer's disease (AD) are well characterised but, until recently, short-term memory (STM) function has attracted far less attention. We employed a recently-developed, delayed reproduction task which requires participants to reproduce precisely the remembered location of items they had seen only seconds previously. This paradigm provides not only a continuous measure of localization error in memory, but also an index of relational binding by determining the frequency with which an object is misplaced to the location of one of the other items held in memory. Such binding errors in STM have previously been found on this task to be sensitive to medial temporal lobe (MTL) damage in focal lesion cases. Twenty individuals with pathological mutations in presenilin 1 or amyloid precursor protein genes for familial Alzheimer's disease (FAD) were tested together with 62 healthy controls. Participants were assessed using the delayed reproduction memory task, a standard neuropsychological battery and structural MRI.

Overall, FAD mutation carriers were worse than controls for object identity as well as in gross localization memory performance. Moreover, they showed greater misbinding of object identity and location than healthy controls. Thus they would often mislocalize a correctly-identified item to the location of one of the other items held in memory. Significantly, asymptomatic gene carriers – who performed similarly to healthy controls on standard neuropsychological tests – had a specific impairment in object-location binding, despite intact memory for object identity and location. Consistent with the hypothesis that the hippocampus is critically involved in relational binding regardless of memory duration, decreased hippocampal volume across FAD participants was significantly associated with deficits in object-location binding but not with recall precision for object identity or localization. Object-location binding may therefore provide a sensitive cognitive biomarker for MTL dysfunction in a range of diseases including AD.

]]>
<![CDATA[Nature, nurture, and expertise]]> https://www.researchpad.co/product?articleinfo=5ad67fe5463d7e7f660f4328

Rather than investigating the extent to which training can improve performance under experimental conditions (‘what could be’), we ask about the origins of expertise as it exists in the world (‘what is’). We used the twin method to investigate the genetic and environmental origins of exceptional performance in reading, a skill that is a major focus of educational training in the early school years. Selecting reading experts as the top 5% from a sample of 10,000 12-year-old twins assessed on a battery of reading tests, three findings stand out. First, we found that genetic factors account for more than half of the difference in performance between expert and normal readers. Second, our results suggest that reading expertise is the quantitative extreme of the same genetic and environmental factors that affect reading performance for normal readers. Third, growing up in the same family and attending the same schools account for less than a fifth of the difference between expert and normal readers. We discuss implications and interpretations (‘what is inherited is DNA sequence variation’; ‘the abnormal is normal’). Finally, although there is no necessary relationship between ‘what is’ and ‘what could be’, the most far-reaching issues about the acquisition of expertise lie at the interface between them (‘the nature of nurture: from a passive model of imposed environments to an active model of shaped experience’).

]]>
<![CDATA[Impact of Feedback on Three Phases of Performance Monitoring]]> https://www.researchpad.co/product?articleinfo=5ad5c4e7463d7e4a9a48b775

We investigated if certain phases of performance monitoring show differential sensitivity to external feedback and thus rely on distinct mechanisms. The phases of interest were: the error phase (FE), the phase of the correct response after errors (FEC), and the phase of correct responses following corrects (FCC). We tested accuracy and reaction time (RT) on 12 conditions of a continuous-choice-response task; the 2-back task. External feedback was either presented or not in FE and FEC, and delivered on 0%, 20%, or 100% of FCC trials. The FCC20 was matched to FE and FEC in the number of sounds received so that we could investigate when external feedback was most valuable to the participants. We found that external feedback led to a reduction in accuracy when presented on all the correct responses. Moreover, RT was significantly reduced for FCC100, which in turn correlated with the accuracy reduction. Interestingly, the correct response after an error was particularly sensitive to external feedback since accuracy was reduced when external feedback was presented during this phase but not for FCC20. Notably, error-monitoring was not influenced by feedback-type. The results are in line with models suggesting that the internal error-monitoring system is sufficient in cognitively demanding tasks where performance is ∼ 80%, as well as theories stipulating that external feedback directs attention away from the task. Our data highlight the first correct response after an error as particularly sensitive to external feedback, suggesting that important consolidation of response strategy takes place here.

]]>
<![CDATA[Biological motion stimuli are attractive to medaka fish]]> https://www.researchpad.co/product?articleinfo=5ad4097e463d7e2d800b6e50

In many social fish species, visual cues play an important role in inducing shoaling behaviour. The present study is the first to examine whether and how “biological motion” depicting a moving creature by means of only a small number of isolated points induces shoaling behaviour in fish. Medaka (Oryzias latipes) were used because they are known to have high visual acuity and exhibit a strong tendency to form shoals. In experiment 1, we found that the presentation of medaka biological motion resulted in heightened shoaling behaviour when compared with that of non-biological motion (depicted by a small number of points placed at fixed distances that moved at a constant speed in a constant direction). In experiment 2, it was indicated that medaka biological motion was more effective at inducing shoaling behaviour when compared with human biological motion. In experiment 3, it was demonstrated that shoaling behaviour was largely dependent on the smoothness of the biological motion. In experiment 4, we revealed that shoaling behaviour was maximised in normal speed group and decreased in faster- and slower-than-normal speed groups. In experiment 5, it was shown that shoaling behaviour was slightly reduced when a reversed movie was presented. These results suggest that motion information extracted from conspecifics was sufficient to induce shoaling behaviour in medaka and that deviation from normal and familiar motion impeded shoaling behaviour. The naturalness of motion may be responsible for the induction of shoaling behaviour.

Electronic supplementary material

The online version of this article (doi:10.1007/s10071-013-0687-y) contains supplementary material, which is available to authorized users.

]]>
<![CDATA[Characteristics of worry in Generalized Anxiety Disorder]]> https://www.researchpad.co/product?articleinfo=5ad03010463d7e67b9d6e2f6

Background & objectives

Groups of clients and community volunteers with Generalized Anxiety Disorder (GAD) and clients with Panic Disorder were compared to a group with elevated worry but without GAD on a range of measures, to identify individual differences beyond a high propensity to worry.

Method

Participants completed standardised questionnaires and a behavioural worry task that assesses frequency and severity of negative thought intrusions.

Results

Relative to high worriers, clients with GAD had higher scores on trait anxiety, depression, more negative beliefs about worry, a greater range of worry topics, and more frequent and severe negative thought intrusions. Relative to community volunteers with GAD, clients in treatment reported poorer attentional control. Compared to clients with Panic Disorder, clients with GAD had higher trait anxiety, propensity to worry, negative beliefs and a wider range of worry content.

Conclusions

Results confirmed expectations of group differences based on GAD diagnostic criteria, but also revealed other differences in mood, characteristics of worry, and perceived attentional control that may play a role in the decision to seek treatment.

]]>
<![CDATA[Discrimination of familiar human faces in dogs (Canis familiaris)]]> https://www.researchpad.co/product?articleinfo=5ace7ae5463d7e1617a11978

Faces are an important visual category for many taxa, and the human face is no exception to this. Because faces differ in subtle ways and possess many idiosyncratic features, they provide a rich source of perceptual cues. A fair amount of those cues are learned through social interactions and are used for future identification of individual humans. These effects of individual experience can be studied particularly well in hetero-specific face perception. Domestic dogs represent a perfect model in this respect, due to their proved ability to extract important information from the human face in socio-communicative interactions. There is also suggestive evidence that dogs can identify their owner or other familiar human individuals by using visual information from the face. However, most studies have used only dogs’ looking behavior to examine their visual processing of human faces and it has been demonstrated only that dogs can differentiate between familiar and unknown human faces. Here, we examined the dog's ability to discriminate the faces of two familiar persons by active choice (approach and touch). Furthermore, in successive stages of the experiment we investigated how well dogs discriminate humans in different representations by systematically reducing the informational richness and the quality of the stimuli. We found a huge inter-individual and inter-stage variance in performance, indicating differences across dogs in their learning ability as well as their selection of discriminative cues. On a group level, the performance of dogs significantly decreased when they were presented with pictures of human heads after having learned to discriminate the real heads, and when – after relearning – confronted with the same pictures showing only the inner parts of the heads. However, as two dogs quickly mastered all stages, we conclude that dogs are in principle able to discriminate people on the basis of visual information from their faces and by making active choices.

]]>
<![CDATA[The role of prestimulus activity in visual extinction]]> https://www.researchpad.co/product?articleinfo=5acc893f463d7e4524cc2534

Patients with visual extinction following right-hemisphere damage sometimes see and sometimes miss stimuli in the left visual field, particularly when stimuli are presented simultaneously to both visual fields. Awareness of left visual field stimuli is associated with increased activity in bilateral parietal and frontal cortex. However, it is unknown why patients see or miss these stimuli. Previous neuroimaging studies in healthy adults show that prestimulus activity biases perceptual decisions, and biases in visual perception can be attributed to fluctuations in prestimulus activity in task relevant brain regions. Here, we used functional MRI to investigate whether prestimulus activity affected perception in the context of visual extinction following stroke. We measured prestimulus activity in stimulus-responsive cortical areas during an extinction paradigm in a patient with unilateral right parietal damage and visual extinction. This allowed us to compare prestimulus activity on physically identical bilateral trials that either did or did not lead to visual extinction. We found significantly increased activity prior to stimulus presentation in two areas that were also activated by visual stimulation: the left calcarine sulcus and right occipital inferior cortex. Using dynamic causal modelling (DCM) we found that both these differences in prestimulus activity and stimulus evoked responses could be explained by enhanced effective connectivity within and between visual areas, prior to stimulus presentation. Thus, we provide evidence for the idea that differences in ongoing neural activity in visually responsive areas prior to stimulus onset affect awareness in visual extinction, and that these differences are mediated by fluctuations in extrinsic and intrinsic connectivity.

]]>
<![CDATA[Perception of length to width relations of city squares]]> https://www.researchpad.co/product?articleinfo=5acc1ee3463d7e3ba1d2b59a

In this paper, we focus on how people perceive the aspect ratio of city squares. Earlier research has focused on distance perception but not so much on the perceived aspect ratio of the surrounding space. Furthermore, those studies have focused on “open” spaces rather than urban areas enclosed by walls, houses and filled with people, cars, etc. In two experiments, we therefore measured, using a direct and an indirect method, the perceived aspect ratio of five city squares in the historic city center of Delft, the Netherlands. We also evaluated whether the perceived aspect ratio of city squares was affected by the position of the observer on the square. In the first experiment, participants were asked to set the aspect ratio of a small rectangle such that it matched the perceived aspect ratio of the city square. In the second experiment, participants were asked to estimate the length and width of the city square separately. In the first experiment, we found that the perceived aspect ratio was in general lower than the physical aspect ratio. However, in the second experiment, we found that the calculated ratios were close to veridical except for the most elongated city square. We conclude therefore that the outcome depends on how the measurements are performed. Furthermore, although indirect measurements are nearly veridical, the perceived aspect ratio is an underestimation of the physical aspect ratio when measured in a direct way. Moreover, the perceived aspect ratio also depends on the location of the observer. These results may be beneficial to the design of large open urban environments, and in particular to rectangular city squares.

]]>