ResearchPad - General Neuroscience https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Convergent Spinal Circuits Facilitating Human Wrist Flexors]]> https://www.researchpad.co/product?articleinfo=5c00e0b6d5eed0c484ea59ce

Noninvasive assessment of spinal circuitry in humans is limited, especially for Ib pathways in the upper limb. We developed a protocol in which we evoke the H-reflex in flexor carpi radialis (FCR) by median nerve stimulation and condition it with electrical stimulation above motor threshold over the extensor carpi radialis (ECR) muscle belly. Eighteen healthy adults (8 male, 10 female) took part in the study. There was a clear reflex facilitation at a 30 ms interstimulus interval (ISI) and suppression at a 70 ms ISI, which was highly consistent across subjects. We investigated the following two hypotheses of the possible source of the facilitation: (1) ECR Ib afferents from Golgi tendon organs, activated by the twitch following ECR stimulation; and (2) FCR afferents, from spindles and/or Golgi tendon organs, activated by the wrist extension movement that follows ECR stimulation. Several human and monkey experiments indicated a role for both of these sets of afferents. Our results provide evidence for a spinal circuit in which flexor motoneurons receive convergent excitatory input from flexor afferents as well as from extensor Ib afferents; this circuit can be straightforwardly assessed noninvasively in humans.

SIGNIFICANCE STATEMENT Here we described a novel spinal circuit, which is easy to assess noninvasively in humans. Understanding this circuit in more detail could be beneficial for the design of clinical tests in neurological conditions.

]]>
<![CDATA[Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice]]> https://www.researchpad.co/product?articleinfo=5c00e0b4d5eed0c484ea5929

Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture.

SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex.

]]>
<![CDATA[The neural system of metacognition accompanying decision-making in the prefrontal cortex]]> https://www.researchpad.co/product?articleinfo=5ae95a3c463d7e06f246c069

Decision-making is usually accompanied by metacognition, through which a decision maker monitors uncertainty regarding a decision and may then consequently revise the decision. These metacognitive processes can occur prior to or in the absence of feedback. However, the neural mechanisms of metacognition remain controversial. One theory proposes an independent neural system for metacognition in the prefrontal cortex (PFC); the other, that metacognitive processes coincide and overlap with the systems used for the decision-making process per se. In this study, we devised a novel “decision–redecision” paradigm to investigate the neural metacognitive processes involved in redecision as compared to the initial decision-making process. The participants underwent a perceptual decision-making task and a rule-based decision-making task during functional magnetic resonance imaging (fMRI). We found that the anterior PFC, including the dorsal anterior cingulate cortex (dACC) and lateral frontopolar cortex (lFPC), were more extensively activated after the initial decision. The dACC activity in redecision positively scaled with decision uncertainty and correlated with individual metacognitive uncertainty monitoring abilities—commonly occurring in both tasks—indicating that the dACC was specifically involved in decision uncertainty monitoring. In contrast, the lFPC activity seen in redecision processing was scaled with decision uncertainty reduction and correlated with individual accuracy changes—positively in the rule-based decision-making task and negatively in the perceptual decision-making task. Our results show that the lFPC was specifically involved in metacognitive control of decision adjustment and was subject to different control demands of the tasks. Therefore, our findings support that a separate neural system in the PFC is essentially involved in metacognition and further, that functions of the PFC in metacognition are dissociable.

]]>
<![CDATA[In vivo clonal analysis reveals spatiotemporal regulation of thalamic nucleogenesis]]> https://www.researchpad.co/product?articleinfo=5ae95a3e463d7e06f246c06a

The thalamus, a crucial regulator of cortical functions, is composed of many nuclei arranged in a spatially complex pattern. Thalamic neurogenesis occurs over a short period during mammalian embryonic development. These features have hampered the effort to understand how regionalization, cell divisions, and fate specification are coordinated and produce a wide array of nuclei that exhibit distinct patterns of gene expression and functions. Here, we performed in vivo clonal analysis to track the divisions of individual progenitor cells and spatial allocation of their progeny in the developing mouse thalamus. Quantitative analysis of clone compositions revealed evidence for sequential generation of distinct sets of thalamic nuclei based on the location of the founder progenitor cells. Furthermore, we identified intermediate progenitor cells that produced neurons populating more than one thalamic nuclei, indicating a prolonged specification of nuclear fate. Our study reveals an organizational principle that governs the spatial and temporal progression of cell divisions and fate specification and provides a framework for studying cellular heterogeneity and connectivity in the mammalian thalamus.

]]>
<![CDATA[How measurement science can improve confidence in research results]]> https://www.researchpad.co/product?articleinfo=5ae95a46463d7e06f246c06e

The current push for rigor and reproducibility is driven by a desire for confidence in research results. Here, we suggest a framework for a systematic process, based on consensus principles of measurement science, to guide researchers and reviewers in assessing, documenting, and mitigating the sources of uncertainty in a study. All study results have associated ambiguities that are not always clarified by simply establishing reproducibility. By explicitly considering sources of uncertainty, noting aspects of the experimental system that are difficult to characterize quantitatively, and proposing alternative interpretations, the researcher provides information that enhances comparability and reproducibility.

]]>
<![CDATA[Identifying novel strategies for treating human hair loss disorders: Cyclosporine A suppresses the Wnt inhibitor, SFRP1, in the dermal papilla of human scalp hair follicles]]> https://www.researchpad.co/product?articleinfo=5afd46cd463d7e6ee57105ce

Hair growth disorders often carry a major psychological burden. Therefore, more effective human hair growth–modulatory agents urgently need to be developed. Here, we used the hypertrichosis-inducing immunosuppressant, Cyclosporine A (CsA), as a lead compound to identify new hair growth–promoting molecular targets. Through microarray analysis we identified the Wnt inhibitor, secreted frizzled related protein 1 (SFRP1), as being down-regulated in the dermal papilla (DP) of CsA-treated human scalp hair follicles (HFs) ex vivo. Therefore, we further investigated the function of SFRP1 using a pharmacological approach and found that SFRP1 regulates intrafollicular canonical Wnt/β-catenin activity through inhibition of Wnt ligands in the human hair bulb. Conversely, inhibiting SFRP1 activity through the SFRP1 antagonist, WAY-316606, enhanced hair shaft production, hair shaft keratin expression, and inhibited spontaneous HF regression (catagen) ex vivo. Collectively, these data (a) identify Wnt signalling as a novel, non–immune-inhibitory CsA target; (b) introduce SFRP1 as a physiologically important regulator of canonical β-catenin activity in a human (mini-)organ; and (c) demonstrate WAY-316606 to be a promising new promoter of human hair growth. Since inhibiting SFRP1 only facilitates Wnt signalling through ligands that are already present, this ‘ligand-limited’ therapeutic strategy for promoting human hair growth may circumvent potential oncological risks associated with chronic Wnt over-activation.

]]>
<![CDATA[Quantification of Site-specific Protein Lysine Acetylation and Succinylation Stoichiometry Using Data-independent Acquisition Mass Spectrometry]]> https://www.researchpad.co/product?articleinfo=5b59a321463d7e789700d0d6

Post-translational modification (PTM) of protein lysine residues by NƐ-acylation induces structural changes that can dynamically regulate protein functions, for example, by changing enzymatic activity or by mediating interactions. Precise quantification of site-specific protein acylation occupancy, or stoichiometry, is essential for understanding the functional consequences of both global low-level stoichiometry and individual high-level acylation stoichiometry of specific lysine residues. Other groups have reported measurement of lysine acetylation stoichiometry by comparing the ratio of peptide precursor isotopes from endogenous, natural abundance acylation and exogenous, heavy isotope-labeled acylation introduced after quantitative chemical acetylation of proteins using stable isotope-labeled acetic anhydride. This protocol describes an optimized approach featuring several improvements, including: (1) increased chemical acylation efficiency, (2) the ability to measure protein succinylation in addition to acetylation, and (3) improved quantitative accuracy due to reduced interferences using fragment ion quantification from data-independent acquisitions (DIA) instead of precursor ion signal from data-dependent acquisition (DDA). The use of extracted peak areas from fragment ions for quantification also uniquely enables differentiation of site-level acylation stoichiometry from proteolytic peptides containing more than one lysine residue, which is not possible using precursor ion signals for quantification. Data visualization in Skyline, an open source quantitative proteomics environment, allows for convenient data inspection and review. Together, this workflow offers unbiased, precise, and accurate quantification of site-specific lysine acetylation and succinylation occupancy of an entire proteome, which may reveal and prioritize biologically relevant acylation sites.

]]>
<![CDATA[Biocuration: Distilling data into knowledge]]> https://www.researchpad.co/product?articleinfo=5ae5cb72463d7e39eef05ada

Data, including information generated from them by processing and analysis, are an asset with measurable value. The assets that biological research funding produces are the data generated, the information derived from these data, and, ultimately, the discoveries and knowledge these lead to. From the time when Henry Oldenburg published the first scientific journal in 1665 (Proceedings of the Royal Society) to the founding of the United States National Library of Medicine in 1879 to the present, there has been a sustained drive to improve how researchers can record and discover what is known. Researchers’ experimental work builds upon years and (collectively) billions of dollars’ worth of earlier work. Today, researchers are generating data at ever-faster rates because of advances in instrumentation and technology, coupled with decreases in production costs. Unfortunately, the ability of researchers to manage and disseminate their results has not kept pace, so their work cannot achieve its maximal impact. Strides have recently been made, but more awareness is needed of the essential role that biological data resources, including biocuration, play in maintaining and linking this ever-growing flood of data and information. The aim of this paper is to describe the nature of data as an asset, the role biocurators play in increasing its value, and consistent, practical means to measure effectiveness that can guide planning and justify costs in biological research information resources’ development and management.

]]>
<![CDATA[Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content]]> https://www.researchpad.co/product?articleinfo=5ae5cb71463d7e39eef05ad9

A constellation of metabolic disorders, including obesity, dysregulated lipids, and elevations in blood glucose levels, has been associated with cardiovascular disease and diabetes. Analysis of data from recently published genome-wide association studies (GWAS) demonstrated that reduced-function polymorphisms in the organic cation transporter, OCT1 (SLC22A1), are significantly associated with higher total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels and an increased risk for type 2 diabetes mellitus, yet the mechanism linking OCT1 to these metabolic traits remains puzzling. Here, we show that OCT1, widely characterized as a drug transporter, plays a key role in modulating hepatic glucose and lipid metabolism, potentially by mediating thiamine (vitamin B1) uptake and hence its levels in the liver. Deletion of Oct1 in mice resulted in reduced activity of thiamine-dependent enzymes, including pyruvate dehydrogenase (PDH), which disrupted the hepatic glucose–fatty acid cycle and shifted the source of energy production from glucose to fatty acids, leading to a reduction in glucose utilization, increased gluconeogenesis, and altered lipid metabolism. In turn, these effects resulted in increased total body adiposity and systemic levels of glucose and lipids. Importantly, wild-type mice on thiamine deficient diets (TDs) exhibited impaired glucose metabolism that phenocopied Oct1 deficient mice. Collectively, our study reveals a critical role of hepatic thiamine deficiency through OCT1 deficiency in promoting the metabolic inflexibility that leads to the pathogenesis of cardiometabolic disease.

]]>
<![CDATA[The rostromedial tegmental nucleus is essential for non-rapid eye movement sleep]]> https://www.researchpad.co/product?articleinfo=5ae5a51d463d7e33ca31f530

The rostromedial tegmental nucleus (RMTg), also called the GABAergic tail of the ventral tegmental area, projects to the midbrain dopaminergic system, dorsal raphe nucleus, locus coeruleus, and other regions. Whether the RMTg is involved in sleep–wake regulation is unknown. In the present study, pharmacogenetic activation of rat RMTg neurons promoted non-rapid eye movement (NREM) sleep with increased slow-wave activity (SWA). Conversely, rats after neurotoxic lesions of 8 or 16 days showed decreased NREM sleep with reduced SWA at lights on. The reduced SWA persisted at least 25 days after lesions. Similarly, pharmacological and pharmacogenetic inactivation of rat RMTg neurons decreased NREM sleep. Electrophysiological experiments combined with optogenetics showed a direct inhibitory connection between the terminals of RMTg neurons and midbrain dopaminergic neurons. The bidirectional effects of the RMTg on the sleep–wake cycle were mimicked by the modulation of ventral tegmental area (VTA)/substantia nigra compacta (SNc) dopaminergic neuronal activity using a pharmacogenetic approach. Furthermore, during the 2-hour recovery period following 6-hour sleep deprivation, the amount of NREM sleep in both the lesion and control rats was significantly increased compared with baseline levels; however, only the control rats showed a significant increase in SWA compared with baseline levels. Collectively, our findings reveal an essential role of the RMTg in the promotion of NREM sleep and homeostatic regulation.

]]>
<![CDATA[In Vivo Imaging of Muscle-tendon Morphogenesis in Drosophila Pupae]]> https://www.researchpad.co/product?articleinfo=5bff41f3d5eed0c484aa20c4

Muscles together with tendons and the skeleton enable animals including humans to move their body parts. Muscle morphogenesis is highly conserved from animals to humans. Therefore, the powerful Drosophila model system can be used to study concepts of muscle-tendon development that can also be applied to human muscle biology. Here, we describe in detail how morphogenesis of the adult muscle-tendon system can be easily imaged in living, developing Drosophila pupae. Hence, the method allows investigating proteins, cells and tissues in their physiological environment. In addition to a step-by-step protocol with helpful tips, we provide a comprehensive overview of fluorescently tagged marker proteins that are suitable for studying the muscle-tendon system. To highlight the versatile applications of the protocol, we show example movies ranging from visualization of long-term morphogenetic events – occurring on the time scale of hours and days – to visualization of short-term dynamic processes like muscle twitching occurring on time scale of seconds. Taken together, this protocol should enable the reader to design and perform live-imaging experiments for investigating muscle-tendon morphogenesis in the intact organism.

]]>
<![CDATA[Simple Generation of a High Yield Culture of Induced Neurons from Human Adult Skin Fibroblasts]]> https://www.researchpad.co/product?articleinfo=5bff41f0d5eed0c484aa2063

Induced neurons (iNs), the product of somatic cells directly converted to neurons, are a way to obtain patient-derived neurons from tissue that is easily accessible. Through this route, mature neurons can be obtained in a matter of a few weeks. Here, we describe a straightforward and rapid one-step protocol to obtain iNs from dermal fibroblasts obtained through biopsy samples from adult human donors. We explain each step of the process, including the maintenance of the dermal fibroblasts, the freezing procedure to build a stock of the cell line, seeding of the cells for reprogramming, as well as the culture conditions during the conversion process. In addition, we describe the preparation of glass coverslips for electrophysiological recordings, long-term coating conditions, and fluorescence activated cell sorting (FACS). We also illustrate examples of the results to be expected. The protocol described here is easy to perform and can be applied to human fibroblasts derived from human skin biopsies from patients with various different diagnoses and ages. This protocol generates a sufficient amount of iNs which can be used for a wide array of biomedical applications, including disease modeling, drug screening, and target validation.

]]>
<![CDATA[Bioprinting of Cartilage and Skin Tissue Analogs Utilizing a Novel Passive Mixing Unit Technique for Bioink Precellularization]]> https://www.researchpad.co/product?articleinfo=5b59517d463d7e5b5d3ed17d

Bioprinting is a powerful technique for the rapid and reproducible fabrication of constructs for tissue engineering applications. In this study, both cartilage and skin analogs were fabricated after bioink pre-cellularization utilizing a novel passive mixing unit technique. This technique was developed with the aim to simplify the steps involved in the mixing of a cell suspension into a highly viscous bioink. The resolution of filaments deposited through bioprinting necessitates the assurance of uniformity in cell distribution prior to printing to avoid the deposition of regions without cells or retention of large cell clumps that can clog the needle. We demonstrate the ability to rapidly blend a cell suspension with a bioink prior to bioprinting of both cartilage and skin analogs. Both tissue analogs could be cultured for up to 4 weeks. Histological analysis demonstrated both cell viability and deposition of tissue specific extracellular matrix (ECM) markers such as glycosaminoglycans (GAGs) and collagen I respectively.

]]>
<![CDATA[The ecology of immune state in a wild mammal, Mus musculus domesticus]]> https://www.researchpad.co/product?articleinfo=5ae5a51e463d7e33ca31f531

The immune state of wild animals is largely unknown. Knowing this and what affects it is important in understanding how infection and disease affects wild animals. The immune state of wild animals is also important in understanding the biology of their pathogens, which is directly relevant to explaining pathogen spillover among species, including to humans. The paucity of knowledge about wild animals' immune state is in stark contrast to our exquisitely detailed understanding of the immunobiology of laboratory animals. Making an immune response is costly, and many factors (such as age, sex, infection status, and body condition) have individually been shown to constrain or promote immune responses. But, whether or not these factors affect immune responses and immune state in wild animals, their relative importance, and how they interact (or do not) are unknown. Here, we have investigated the immune ecology of wild house mice—the same species as the laboratory mouse—as an example of a wild mammal, characterising their adaptive humoral, adaptive cellular, and innate immune state. Firstly, we show how immune variation is structured among mouse populations, finding that there can be extensive immune discordance among neighbouring populations. Secondly, we identify the principal factors that underlie the immunological differences among mice, showing that body condition promotes and age constrains individuals’ immune state, while factors such as microparasite infection and season are comparatively unimportant. By applying a multifactorial analysis to an immune system-wide analysis, our results bring a new and unified understanding of the immunobiology of a wild mammal.

]]>
<![CDATA[The metabolic theory of ecology and the cost of parasitism]]> https://www.researchpad.co/product?articleinfo=5ae438a4463d7e05f95d3cae

With over 1 million species on earth, each biologically unique, do we have any hope of understanding whether species will persist in a warming world? We might, because it turns out that there is surprising regularity in how warming accelerates the major metabolic processes that power life. A persistent challenge has been to understand ecological effects of temperature in the context of species interactions, especially when individuals not only experience temperature but also mortality due to parasitism or predation. Kirk et al. have shown how the effects of parasites vary with warming in a manner entirely consistent with general temperature dependence of host and parasite metabolism.

]]>
<![CDATA[Meta-research matters: Meta-spin cycles, the blindness of bias, and rebuilding trust]]> https://www.researchpad.co/product?articleinfo=5ae438a6463d7e05f95d3caf

Abstract

Meta-research is research about research. Meta-research may not be as click-worthy as a meta-pug—a pug dog dressed up in a pug costume—but it is crucial to understanding research. A particularly valuable contribution of meta-research is to identify biases in a body of evidence. Bias can occur in the design, conduct, or publication of research and is a systematic deviation from the truth in results or inferences. The findings of meta-research can tell us which evidence to trust and what must be done to improve future research. We should be using meta-research to provide the evidence base for implementing systemic changes to improve research, not for discrediting it.

]]>
<![CDATA[Dynamic frontotemporal systems process space and time in working memory]]> https://www.researchpad.co/product?articleinfo=5ae424dc463d7e02f65f0ba7

How do we rapidly process incoming streams of information in working memory, a cognitive mechanism central to human behavior? Dominant views of working memory focus on the prefrontal cortex (PFC), but human hippocampal recordings provide a neurophysiological signature distinct from the PFC. Are these regions independent, or do they interact in the service of working memory? We addressed this core issue in behavior by recording directly from frontotemporal sites in humans performing a visuospatial working memory task that operationalizes the types of identity and spatiotemporal information we encounter every day. Theta band oscillations drove bidirectional interactions between the PFC and medial temporal lobe (MTL; including the hippocampus). MTL theta oscillations directed the PFC preferentially during the processing of spatiotemporal information, while PFC theta oscillations directed the MTL for all types of information being processed in working memory. These findings reveal an MTL theta mechanism for processing space and time and a domain-general PFC theta mechanism, providing evidence that rapid, dynamic MTL–PFC interactions underlie working memory for everyday experiences.

]]>
<![CDATA[Dunce Phosphodiesterase Acts as a Checkpoint for Drosophila Long-Term Memory in a Pair of Serotonergic Neurons]]> https://www.researchpad.co/product?articleinfo=5b58e195463d7e52b80137cc

Summary

A key function of the brain is to filter essential information and store it in the form of stable, long-term memory (LTM). We demonstrate here that the Dunce (Dnc) phosphodiesterase, an important enzyme that degrades cAMP, acts as a molecular switch that controls LTM formation in Drosophila. We show that, during LTM formation, Dnc is inhibited in the SPN, a pair of newly characterized serotonergic neurons, which stimulates the cAMP/PKA pathway. As a consequence, the SPN activates downstream dopaminergic neurons, opening the gate for LTM formation in the olfactory memory center, the mushroom body. Strikingly, transient inhibition of Dnc in the SPN by RNAi was sufficient to induce LTM formation with a training protocol that normally generates only short-lived memory. Thus, Dnc activity in the SPN acts as a memory checkpoint to guarantee that only the most relevant learned experiences are consolidated into stable memory.

]]>
<![CDATA[Correction: MERS-CoV spillover at the camel-human interface]]> https://www.researchpad.co/product?articleinfo=5bfd9b7fd5eed0c48453fcca ]]> <![CDATA[Population genetics and GWAS: A primer]]> https://www.researchpad.co/product?articleinfo=5abb5b82463d7e0a4086a5d1

This primer provides some background to help non-specialists understand a new theoretical evolutionary genetics study that helps explain why thousands of variants of small effect contribute to complex traits.

]]>