ResearchPad - Genetics(clinical) Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia]]>

Hybridization and gene flow between species appears to be common. Even though it is clear that hybridization is widespread across all surveyed taxonomic groups, the magnitude and consequences of introgression are still largely unknown. Thus it is crucial to develop the statistical machinery required to uncover which genomic regions have recently acquired haplotypes via introgression from a sister population. We developed a novel machine learning framework, called FILET (Finding Introgressed Loci via Extra-Trees) capable of revealing genomic introgression with far greater power than competing methods. FILET works by combining information from a number of population genetic summary statistics, including several new statistics that we introduce, that capture patterns of variation across two populations. We show that FILET is able to identify loci that have experienced gene flow between related species with high accuracy, and in most situations can correctly infer which population was the donor and which was the recipient. Here we describe a data set of outbred diploid Drosophila sechellia genomes, and combine them with data from D. simulans to examine recent introgression between these species using FILET. Although we find that these populations may have split more recently than previously appreciated, FILET confirms that there has indeed been appreciable recent introgression (some of which might have been adaptive) between these species, and reveals that this gene flow is primarily in the direction of D. simulans to D. sechellia.

<![CDATA[Patterning mechanisms diversify neuroepithelial domains in the Drosophila optic placode]]>

The central nervous system develops from monolayered neuroepithelial sheets. In a first step patterning mechanisms subdivide the seemingly uniform epithelia into domains allowing an increase of neuronal diversity in a tightly controlled spatial and temporal manner. In Drosophila, neuroepithelial patterning of the embryonic optic placode gives rise to the larval eye primordium, consisting of two photoreceptor (PR) precursor types (primary and secondary), as well as the optic lobe primordium, which during larval and pupal stages develops into the prominent optic ganglia. Here, we characterize a genetic network that regulates the balance between larval eye and optic lobe precursors, as well as between primary and secondary PR precursors. In a first step the proneural factor Atonal (Ato) specifies larval eye precursors, while the orphan nuclear receptor Tailless (Tll) is crucial for the specification of optic lobe precursors. The Hedgehog and Notch signaling pathways act upstream of Ato and Tll to coordinate neural precursor specification in a timely manner. The correct spatial placement of the boundary between Ato and Tll in turn is required to control the precise number of primary and secondary PR precursors. In a second step, Notch signaling also controls a binary cell fate decision, thus, acts at the top of a cascade of transcription factor interactions to define PR subtype identity. Our model serves as an example of how combinatorial action of cell extrinsic and cell intrinsic factors control neural tissue patterning.

<![CDATA[Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5’ splice site]]>

Phenylketonuria (PKU), one of the most common inherited diseases of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Recently, PAH exon 11 was identified as a vulnerable exon due to a weak 3’ splice site, with different exonic mutations affecting exon 11 splicing through disruption of exonic splicing regulatory elements. In this study, we report a novel intron 11 regulatory element, which is involved in exon 11 splicing, as revealed by the investigated pathogenic effect of variants c.1199+17G>A and c.1199+20G>C, identified in PKU patients. Both mutations cause exon 11 skipping in a minigene system. RNA binding assays indicate that binding of U1snRNP70 to this intronic region is disrupted, concomitant with a slightly increased binding of inhibitors hnRNPA1/2. We have investigated the effect of deletions and point mutations, as well as overexpression of adapted U1snRNA to show that this splicing regulatory motif is important for regulation of correct splicing at the natural 5’ splice site. The results indicate that U1snRNP binding downstream of the natural 5’ splice site determines efficient exon 11 splicing, thus providing a basis for development of therapeutic strategies to correct PAH exon 11 splicing mutations. In this work, we expand the functional effects of non-canonical intronic U1 snRNP binding by showing that it may enhance exon definition and that, consequently, intronic mutations may cause exon skipping by a novel mechanism, where they disrupt stimulatory U1 snRNP binding close to the 5’ splice site. Notably, our results provide further understanding of the reported therapeutic effect of exon specific U1 snRNA for splicing mutations in disease.

<![CDATA[Unexpected cancer-predisposition gene variants in Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome patients without underlying germline PTEN mutations]]>

Patients with heritable cancer syndromes characterized by germline PTEN mutations (termed PTEN hamartoma tumor syndrome, PHTS) benefit from PTEN-enabled cancer risk assessment and clinical management. PTEN-wildtype patients (~50%) remain at increased risk of developing certain cancers. Existence of germline mutations in other known cancer susceptibility genes has not been explored in these patients, with implications for different medical management. We conducted a 4-year multicenter prospective study of incident patients with features of Cowden/Cowden-like (CS/CS-like) and Bannayan-Riley-Ruvalcaba syndromes (BRRS) without PTEN mutations. Exome sequencing and targeted analysis were performed including 59 clinically actionable genes from the American College of Medical Genetics and Genomics (ACMG) and 24 additional genes associated with inherited cancer syndromes. Pathogenic or likely pathogenic cancer susceptibility gene alterations were found in 7 of the 87 (8%) CS/CS-like and BRRS patients and included MUTYH, RET, TSC2, BRCA1, BRCA2, ERCC2 and HRAS. We found classic phenotypes associated with the identified genes in 5 of the 7 (71.4%) patients. Variant positive patients were enriched for the presence of second malignant neoplasms compared to patients without identified variants (OR = 6.101, 95% CI 1.143–35.98, p = 0.035). Germline variant spectrum and frequencies were compared to The Cancer Genome Atlas (TCGA), including 6 apparently sporadic cancers associated with PHTS. With comparable overall prevalence of germline variants, the spectrum of mutated genes was different in our patients compared to TCGA. Intriguingly, we also found notable enrichment of variants of uncertain significance (VUS) in our patients (OR = 2.3, 95% CI 1.5–3.5, p = 0.0002). Our data suggest that only a small subset of PTEN-wildtype CS/CS-like and BRRS patients could be accounted for by germline variants in some of the known cancer-related genes. Thus, the existence of alterations in other and more likely non-classic cancer-associated genes is plausible, reflecting the complexity of these heterogeneous hereditary cancer syndromes.

<![CDATA[Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica]]>

Emerging pathogens are a major threat to public health, however understanding how pathogens adapt to new niches remains a challenge. New methods are urgently required to provide functional insights into pathogens from the massive genomic data sets now being generated from routine pathogen surveillance for epidemiological purposes. Here, we measure the burden of atypical mutations in protein coding genes across independently evolved Salmonella enterica lineages, and use these as input to train a random forest classifier to identify strains associated with extraintestinal disease. Members of the species fall along a continuum, from pathovars which cause gastrointestinal infection and low mortality, associated with a broad host-range, to those that cause invasive infection and high mortality, associated with a narrowed host range. Our random forest classifier learned to perfectly discriminate long-established gastrointestinal and invasive serovars of Salmonella. Additionally, it was able to discriminate recently emerged Salmonella Enteritidis and Typhimurium lineages associated with invasive disease in immunocompromised populations in sub-Saharan Africa, and within-host adaptation to invasive infection. We dissect the architecture of the model to identify the genes that were most informative of phenotype, revealing a common theme of degradation of metabolic pathways in extraintestinal lineages. This approach accurately identifies patterns of gene degradation and diversifying selection specific to invasive serovars that have been captured by more labour-intensive investigations, but can be readily scaled to larger analyses.

<![CDATA[RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1]]>

RIT1 belongs to the RAS family of small GTPases. Germline and somatic RIT1 mutations have been identified in Noonan syndrome (NS) and cancer, respectively. By using heterologous expression systems and purified recombinant proteins, we identified the p21-activated kinase 1 (PAK1) as novel direct effector of RIT1. We found RIT1 also to directly interact with the RHO GTPases CDC42 and RAC1, both of which are crucial regulators of actin dynamics upstream of PAK1. These interactions are independent of the guanine nucleotide bound to RIT1. Disease-causing RIT1 mutations enhance protein-protein interaction between RIT1 and PAK1, CDC42 or RAC1 and uncouple complex formation from serum and growth factors. We show that the RIT1-PAK1 complex regulates cytoskeletal rearrangements as expression of wild-type RIT1 and its mutant forms resulted in dissolution of stress fibers and reduction of mature paxillin-containing focal adhesions in COS7 cells. This effect was prevented by co-expression of RIT1 with dominant-negative CDC42 or RAC1 and kinase-dead PAK1. By using a transwell migration assay, we show that RIT1 wildtype and the disease-associated variants enhance cell motility. Our work demonstrates a new function for RIT1 in controlling actin dynamics via acting in a signaling module containing PAK1 and RAC1/CDC42, and highlights defects in cell adhesion and migration as possible disease mechanism underlying NS.

<![CDATA[Dissecting closely linked association signals in combination with the mammalian phenotype database can identify candidate genes in dairy cattle]]>


Genome-wide association studies (GWAS) have been successfully implemented in cattle research and breeding. However, moving from the associations to identifying the causal variants and revealing underlying mechanisms have proven complicated. In dairy cattle populations, we face a challenge due to long-range linkage disequilibrium (LD) arising from close familial relationships in the studied individuals. Long range LD makes it difficult to distinguish if one or multiple quantitative trait loci (QTL) are segregating in a genomic region showing association with a phenotype. We had two objectives in this study: 1) to distinguish between multiple QTL segregating in a genomic region, and 2) use of external information to prioritize candidate genes for a QTL along with the candidate variant.


We observed fixing the lead SNP as a covariate can help to distinguish additional close association signal(s). Thereafter, using the mammalian phenotype database, we successfully found candidate genes, in concordance with previous studies, demonstrating the power of this strategy. Secondly, we used variant annotation information to search for causative variants in our candidate genes. The variant information successfully identified known causal mutations and showed the potential to pinpoint the causative mutation(s) which are located in coding regions.


Our approach can distinguish multiple QTL segregating on the same chromosome in a single analysis without manual input. Moreover, utilizing information from the mammalian phenotype database and variant effect predictor as post-GWAS analysis could benefit in candidate genes and causative mutations finding in cattle. Our study not only identified additional candidate genes for milk traits, but also can serve as a routine method for GWAS in dairy cattle.

Electronic supplementary material

The online version of this article (10.1186/s12863-018-0620-0) contains supplementary material, which is available to authorized users.

<![CDATA[Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene]]>

Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to “GS-like effectors”. Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function.

<![CDATA[Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription]]>

Concentration-dependent transcriptional regulation and the spatial regulation of transcription factor levels are poorly studied in plant development. WUSCHEL, a stem cell-promoting homeodomain transcription factor, accumulates at a higher level in the rib meristem than in the overlying central zone, which harbors stem cells in the shoot apical meristems of Arabidopsis thaliana. The differential accumulation of WUSCHEL in adjacent cells is critical for the spatial regulation and levels of CLAVATA3, a negative regulator of WUSCHEL transcription. Earlier studies have revealed that DNA-dependent dimerization, subcellular partitioning and protein destabilization control WUSCHEL protein levels and spatial accumulation. Moreover, the destabilization of WUSCHEL may also depend on the protein concentration. However, the roles of extrinsic spatial cues in maintaining differential accumulation of WUS are not understood. Through transient manipulation of hormone levels, hormone response patterns and analysis of the receptor mutants, we show that cytokinin signaling in the rib meristem acts through the transcriptional regulatory domains, the acidic domain and the WUSCHEL-box, to stabilize the WUS protein. Furthermore, we show that the same WUSCHEL-box functions as a degron sequence in cytokinin deficient regions in the central zone, leading to the destabilization of WUSCHEL. The coupled functions of the WUSCHEL-box in nuclear retention as described earlier, together with cytokinin sensing, reinforce higher nuclear accumulation of WUSCHEL in the rib meristem. In contrast a sub-threshold level may expose the WUSCHEL-box to destabilizing signals in the central zone. Thus, the cytokinin signaling acts as an asymmetric spatial cue in stabilizing the WUSCHEL protein to lead to its differential accumulation in neighboring cells, which is critical for concentration-dependent spatial regulation of CLAVATA3 transcription and meristem maintenance. Furthermore, our work shows that cytokinin response is regulated independently of the WUSCHEL function which may provide robustness to the regulation of WUSCHEL concentration.

<![CDATA[A Bayesian Genomic Regression Model with Skew Normal Random Errors]]>

Genomic selection (GS) has become a tool for selecting candidates in plant and animal breeding programs. In the case of quantitative traits, it is common to assume that the distribution of the response variable can be approximated by a normal distribution. However, it is known that the selection process leads to skewed distributions. There is vast statistical literature on skewed distributions, but the skew normal distribution is of particular interest in this research. This distribution includes a third parameter that drives the skewness, so that it generalizes the normal distribution. We propose an extension of the Bayesian whole-genome regression to skew normal distribution data in the context of GS applications, where usually the number of predictors vastly exceeds the sample size. However, it can also be applied when the number of predictors is smaller than the sample size. We used a stochastic representation of a skew normal random variable, which allows the implementation of standard Markov Chain Monte Carlo (MCMC) techniques to efficiently fit the proposed model. The predictive ability and goodness of fit of the proposed model were evaluated using simulated and real data, and the results were compared to those obtained by the Bayesian Ridge Regression model. Results indicate that the proposed model has a better fit and is as good as the conventional Bayesian Ridge Regression model for prediction, based on the DIC criterion and cross-validation, respectively. A computing program coded in the R statistical package and C programming language to fit the proposed model is available as supplementary material.

<![CDATA[Phosphorelay through the bifunctional phosphotransferase PhyT controls the general stress response in an alphaproteobacterium]]>

Two-component systems constitute phosphotransfer signaling pathways and enable adaptation to environmental changes, an essential feature for bacterial survival. The general stress response (GSR) in the plant-protecting alphaproteobacterium Sphingomonas melonis Fr1 involves a two-component system consisting of multiple stress-sensing histidine kinases (Paks) and the response regulator PhyR; PhyR in turn regulates the alternative sigma factor EcfG, which controls expression of the GSR regulon. While Paks had been shown to phosphorylate PhyR in vitro, it remained unclear if and under which conditions direct phosphorylation happens in the cell, as Paks also phosphorylate the single domain response regulator SdrG, an essential yet enigmatic component of the GSR signaling pathway. Here, we analyze the role of SdrG and investigate an alternative function of the membrane-bound PhyP (here re-designated PhyT), previously assumed to act as a PhyR phosphatase. In vitro assays show that PhyT transfers a phosphoryl group from SdrG to PhyR via phosphoryl transfer on a conserved His residue. This finding, as well as complementary GSR reporter assays, indicate the participation of SdrG and PhyT in a Pak-SdrG-PhyT-PhyR phosphorelay. Furthermore, we demonstrate complex formation between PhyT and PhyR. This finding is substantiated by PhyT-dependent membrane association of PhyR in unstressed cells, while the response regulator is released from the membrane upon stress induction. Our data support a model in which PhyT sequesters PhyR, thereby favoring Pak-dependent phosphorylation of SdrG. In addition, PhyT assumes the role of the SdrG-phosphotransferase to activate PhyR. Our results place SdrG into the GSR signaling cascade and uncover a dual role of PhyT in the GSR.

<![CDATA[Actin organization and endocytic trafficking are controlled by a network linking NIMA-related kinases to the CDC-42-SID-3/ACK1 pathway]]>

Molting is an essential process in the nematode Caenorhabditis elegans during which the epidermal apical extracellular matrix, termed the cuticle, is detached and replaced at each larval stage. The conserved NIMA-related kinases NEKL-2/NEK8/NEK9 and NEKL-3/NEK6/NEK7, together with their ankyrin repeat partners, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, are essential for normal molting. In nekl and mlt mutants, the old larval cuticle fails to be completely shed, leading to entrapment and growth arrest. To better understand the molecular and cellular functions of NEKLs during molting, we isolated genetic suppressors of nekl molting-defective mutants. Using two independent approaches, we identified CDC-42, a conserved Rho-family GTPase, and its effector protein kinase, SID-3/ACK1. Notably, CDC42 and ACK1 regulate actin dynamics in mammals, and actin reorganization within the worm epidermis has been proposed to be important for the molting process. Inhibition of NEKL–MLT activities led to strong defects in the distribution of actin and failure to form molting-specific apical actin bundles. Importantly, this phenotype was reverted following cdc-42 or sid-3 inhibition. In addition, repression of CDC-42 or SID-3 also suppressed nekl-associated defects in trafficking, a process that requires actin assembly and disassembly. Expression analyses indicated that components of the NEKL–MLT network colocalize with both actin and CDC-42 in specific regions of the epidermis. Moreover, NEKL–MLT components were required for the normal subcellular localization of CDC-42 in the epidermis as well as wild-type levels of CDC-42 activation. Taken together, our findings indicate that the NEKL–MLT network regulates actin through CDC-42 and its effector SID-3. Interestingly, we also observed that downregulation of CDC-42 in a wild-type background leads to molting defects, suggesting that there is a fine balance between NEKL–MLT and CDC-42–SID-3 activities in the epidermis.

<![CDATA[Natural allelic variation of the AZI1 gene controls root growth under zinc-limiting condition]]>

Zinc is an essential micronutrient for all living organisms and is involved in a plethora of processes including growth and development, and immunity. However, it is unknown if there is a common genetic and molecular basis underlying multiple facets of zinc function. Here we used natural variation in Arabidopsis thaliana to study the role of zinc in regulating growth. We identify allelic variation of the systemic immunity gene AZI1 as a key for determining root growth responses to low zinc conditions. We further demonstrate that this gene is important for modulating primary root length depending on the zinc and defence status. Finally, we show that the interaction of the immunity signal azelaic acid and zinc level to regulate root growth is conserved in rice. This work demonstrates that there is a common genetic and molecular basis for multiple zinc dependent processes and that nutrient cues can determine the balance of growth and immune responses in plants.

<![CDATA[The presence of rNTPs decreases the speed of mitochondrial DNA replication]]>

Ribonucleotides (rNMPs) are frequently incorporated during replication or repair by DNA polymerases and failure to remove them leads to instability of nuclear DNA (nDNA). Conversely, rNMPs appear to be relatively well-tolerated in mitochondrial DNA (mtDNA), although the mechanisms behind the tolerance remain unclear. We here show that the human mitochondrial DNA polymerase gamma (Pol γ) bypasses single rNMPs with an unprecedentedly high fidelity and efficiency. In addition, Pol γ exhibits a strikingly low frequency of rNMP incorporation, a property, which we find is independent of its exonuclease activity. However, the physiological levels of free rNTPs partially inhibit DNA synthesis by Pol γ and render the polymerase more sensitive to imbalanced dNTP pools. The characteristics of Pol γ reported here could have implications for forms of mtDNA depletion syndrome (MDS) that are associated with imbalanced cellular dNTP pools. Our results show that at the rNTP/dNTP ratios that are expected to prevail in such disease states, Pol γ enters a polymerase/exonuclease idling mode that leads to mtDNA replication stalling. This could ultimately lead to mtDNA depletion and, consequently, to mitochondrial disease phenotypes such as those observed in MDS.

<![CDATA[FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination]]>

Homologous recombination is central to repair DNA double-strand breaks, either accidently arising in mitotic cells or in a programed manner at meiosis. Crossovers resulting from the repair of meiotic breaks are essential for proper chromosome segregation and increase genetic diversity of the progeny. However, mechanisms regulating crossover formation remain elusive. Here, we identified through genetic and protein-protein interaction screens FIDGETIN-LIKE-1 INTERACTING PROTEIN (FLIP) as a new partner of the previously characterized anti-crossover factor FIDGETIN-LIKE-1 (FIGL1) in Arabidopsis thaliana. We showed that FLIP limits meiotic crossover together with FIGL1. Further, FLIP and FIGL1 form a protein complex conserved from Arabidopsis to human. FIGL1 interacts with the recombinases RAD51 and DMC1, the enzymes that catalyze the DNA strand exchange step of homologous recombination. Arabidopsis flip mutants recapitulate the figl1 phenotype, with enhanced meiotic recombination associated with change in counts of DMC1 and RAD51 foci. Our data thus suggests that FLIP and FIGL1 form a conserved complex that regulates the crucial step of strand invasion in homologous recombination.

<![CDATA[ZMYND10 stabilizes intermediate chain proteins in the cytoplasmic pre-assembly of dynein arms]]>

Zinc finger MYND-type-containing 10 (ZMYND10), a cytoplasmic protein expressed in ciliated cells, causes primary ciliary dyskinesia (PCD) when mutated; however, its function is poorly understood. Therefore, in this study, we examined the roles of ZMYND10 using Zmynd10–/–mice exhibiting typical PCD phenotypes, including hydrocephalus and laterality defects. In these mutants, morphology, the number of motile cilia, and the 9+2 axoneme structure were normal; however, inner and outer dynein arms (IDA and ODA, respectively) were absent. ZMYND10 interacted with ODA components and proteins, including LRRC6, DYX1C1, and C21ORF59, implicated in the cytoplasmic pre-assembly of DAs, whose levels were significantly reduced in Zmynd10–/–mice. LRRC6 and DNAI1 were more stable when co-expressed with ZYMND10 than when expressed alone. DNAI2, which did not interact with ZMYND10, was not stabilized by co-expression with ZMYND10 alone, but was stabilized by co-expression with DNAI1 and ZMYND10, suggesting that ZMYND10 stabilized DNAI1, which subsequently stabilized DNAI2. Together, these results demonstrated that ZMYND10 regulated the early stage of DA cytoplasmic pre-assembly by stabilizing DNAI1.

<![CDATA[Cell polarity protein Spa2 coordinates Chs2 incorporation at the division site in budding yeast]]>

Deposition of additional plasma membrane and cargoes during cytokinesis in eukaryotic cells must be coordinated with actomyosin ring contraction, plasma membrane ingression and extracellular matrix remodelling. The process by which the secretory pathway promotes specific incorporation of key factors into the cytokinetic machinery is poorly understood. Here, we show that cell polarity protein Spa2 interacts with actomyosin ring components during cytokinesis. Spa2 directly binds to cytokinetic factors Cyk3 and Hof1. The lethal effects of deleting the SPA2 gene in the absence of either Cyk3 or Hof1 can be suppressed by expression of the hypermorphic allele of the essential chitin synthase II (Chs2), a transmembrane protein transported on secretory vesicles that makes the primary septum during cytokinesis. Spa2 also interacts directly with the chitin synthase Chs2. Interestingly, artificial incorporation of Chs2 into the cytokinetic machinery allows the localisation of Spa2 at the site of division. In addition, increased Spa2 protein levels promote Chs2 incorporation at the site of division and primary septum formation. Our data indicate that Spa2 is recruited to the cleavage site to co-operate with the secretory vesicle system and particular actomyosin ring components to promote the incorporation of Chs2 into the so-called ‘ingression progression complexes’ during cytokinesis in budding yeast.

<![CDATA[High-throughput interaction screens illuminate the role of c-di-AMP in cyanobacterial nighttime survival]]>

The broadly conserved signaling nucleotide cyclic di-adenosine monophosphate (c-di-AMP) is essential for viability in most bacteria where it has been studied. However, characterization of the cellular functions and metabolism of c-di-AMP has largely been confined to the class Bacilli, limiting our functional understanding of the molecule among diverse phyla. We identified the cyclase responsible for c-di-AMP synthesis and characterized the molecule’s role in survival of darkness in the model photosynthetic cyanobacterium Synechococcus elongatus PCC 7942. In addition to the use of traditional genetic, biochemical, and proteomic approaches, we developed a high-throughput genetic interaction screen (IRB-Seq) to determine pathways where the signaling nucleotide is active. We found that in S. elongatus c-di-AMP is produced by an enzyme of the diadenylate cyclase family, CdaA, which was previously unexplored experimentally. A cdaA-null mutant experiences increased oxidative stress and death during the nighttime portion of day-night cycles, in which potassium transport is implicated. These findings suggest that c-di-AMP is biologically active in cyanobacteria and has non-canonical roles in the phylum including oxidative stress management and day-night survival. The pipeline and analysis tools for IRB-Seq developed for this study constitute a quantitative high-throughput approach for studying genetic interactions.

<![CDATA[A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses]]>

Human GWAS of obesity have been successful in identifying loci associated with adiposity, but for the most part, these are non-coding SNPs whose function, or even whose gene of action, is unknown. To help identify the genes on which these human BMI loci may be operating, we conducted a high throughput screen in Drosophila melanogaster. Starting with 78 BMI loci from two recently published GWAS meta-analyses, we identified fly orthologs of all nearby genes (± 250KB). We crossed RNAi knockdown lines of each gene with flies containing tissue-specific drivers to knock down (KD) the expression of the genes only in the brain and the fat body. We then raised the flies on a control diet and compared the amount of fat/triglyceride in the tissue-specific KD group compared to the driver-only control flies. 16 of the 78 BMI GWAS loci could not be screened with this approach, as no gene in the 500-kb region had a fly ortholog. Of the remaining 62 GWAS loci testable in the fly, we found a significant fat phenotype in the KD flies for at least one gene for 26 loci (42%) even after correcting for multiple comparisons. By contrast, the rate of significant fat phenotypes in RNAi KD found in a recent genome-wide Drosophila screen (Pospisilik et al. (2010) is ~5%. More interestingly, for 10 of the 26 positive regions, we found that the nearest gene was not the one that showed a significant phenotype in the fly. Specifically, our screen suggests that for the 10 human BMI SNPs rs11057405, rs205262, rs9925964, rs9914578, rs2287019, rs11688816, rs13107325, rs7164727, rs17724992, and rs299412, the functional genes may NOT be the nearest ones (CLIP1, C6orf106, KAT8, SMG6, QPCTL, EHBP1, SLC39A8, ADPGK /ADPGK-AS1, PGPEP1, KCTD15, respectively), but instead, the specific nearby cis genes are the functional target (namely: ZCCHC8, VPS33A, RSRC2; SPDEF, NUDT3; PAGR1; SETD1, VKORC1; SGSM2, SRR; VASP, SIX5; OTX1; BANK1; ARIH1; ELL; CHST8, respectively). The study also suggests further functional experiments to elucidate mechanism of action for genes evolutionarily conserved for fat storage.

<![CDATA[In Silico Functional Networks Identified in Fish Nucleated Red Blood Cells by Means of Transcriptomic and Proteomic Profiling]]>

Nucleated red blood cells (RBCs) of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq) and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs. For proteome profiling, we developed a proteomic method that combined: (a) fractionation into cytosolic and membrane fractions, (b) hemoglobin removal of the cytosolic fraction, (c) protein digestion, and (d) a novel step with pH reversed-phase peptide fractionation and final Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC ESI-MS/MS) analysis of each fraction. Combined transcriptome- and proteome- sequencing data identified, in silico, novel and striking immune functional networks for rainbow trout nucleated RBCs, which are mainly linked to innate and adaptive immunity. Functional pathways related to regulation of hematopoietic cell differentiation, antigen presentation via major histocompatibility complex class II (MHCII), leukocyte differentiation and regulation of leukocyte activation were identified. These preliminary findings further implicate nucleated RBCs in immune function, such as antigen presentation and leukocyte activation.