ResearchPad - Palaeontology Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[New application of strontium isotopes reveals evidence of limited migratory behaviour in Late Cretaceous hadrosaurs]]>

Dinosaur migration patterns are very difficult to determine, often relying solely on the geographical distribution of fossils. Unfortunately, it is generally not possible to determine if a fossil taxon's geographical distribution is the result of migration or simply a wide distribution. Whereas some attempts have been made to use isotopic systems to determine migratory patterns in dinosaurs, these methods have yet to achieve wider usage in the study of dinosaur ecology. Here, we have used strontium isotope ratios from fossil enamel to reconstruct the movements of an individual hadrosaur from Dinosaur Provincial Park in Alberta, Canada. Results from this study are consistent with a range or migratory pattern between Dinosaur Provincial Park and a contemporaneous locality in the South Saskatchewan River area, Alberta, Canada. This represents a minimum distance of approximately 80 km, which is consistent with migrations seen in modern elephants. These results suggest the continent-wide distribution of some hadrosaur species in the Late Cretaceous of North America is not the result of extremely long-range migratory behaviours.

<![CDATA[A new sawfly of Megalodontesidae (Insecta, Hymenoptera, Pamphilioidea) with pectinate antennae from the Early Cretaceous of China]]>

A new sawfly of Megalodontesidae, Jibaissodes peichenaesp. nov., is described from the Lower Cretaceous Yixian Formation of Northeastern China. It is established mainly based on the pectinate antenna comprising 42 flagellomeres and the proximal 28 bearing apical rami, which gradually shorten in length toward the apex of the flagellum. The pterostigma of the forewing is infuscated apically and on the hind wing, vein 1-Rs is nearly equal to 1r-m and slightly shorter than 1-M. The first tergum is widely excised posteriorly and roundly protruding laterally alike in Megalodontes. This find supports that pectinate antennae in extant sawflies of Megalodontesidae originated at least during or before the Early Cretaceous.

<![CDATA[A new species of Metopocetus (Cetacea, Mysticeti, Cetotheriidae) from the Late Miocene of the Netherlands]]>

The family Cetotheriidae has played a major role in recent discussions of baleen whale phylogenetics. Within this group, the enigmatic, monotypic Metopocetus durinasus has been interpreted as transitional between herpetocetines and other members of the family, but so far has been restricted to a single, fragmentary cranium of uncertain provenance and age. Here, we expand the genus and shed new light on its phylogenetic affinities and functional morphology by describing Metopocetus hunteri sp. nov. from the Late Miocene of the Netherlands. Unlike the holotype of M. durinasus, the material described here is confidently dated and preserves both the tympanic bulla and additional details of the basicranium. M. hunteri closely resembles M. durinasus, differing primarily in its somewhat less distally expanded compound posterior process of the tympanoperiotic. Both species are characterised by the development of an unusually large fossa on the ventral surface of the paroccipital process, which extends anteriorly on to the compound posterior process and completely floors the facial sulcus. In life, this enlarged fossa may have housed the posterior sinus and/or the articulation of the stylohyal. Like other cetotheriids, Metopocetus also bears a well-developed, posteriorly-pointing dorsal infraorbital foramen near the base of the ascending process of the maxilla, the precise function of which remains unclear.