ResearchPad - acrylics https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Mechanical characterization of PVA hydrogels’ rate-dependent response using multi-axial loading]]> https://www.researchpad.co/article/elastic_article_13820 The time-dependent properties of rubber-like synthesized and biological materials are crucial for their applications. Currently, this behavior is mainly measured using axial tensile test, compression test, or indentation. Limited studies performed on using multi-axial loading measurements of time-dependent material behavior exist in the literature. Therefore, the aim of this study is to investigate the viscoelastic response of rubber-like materials under multi-axial loading using cavity expansion and relaxation tests. The tests were performed on PVA hydrogel specimens. Three hyperelasitc models and one term Prony series were used to characterize the viscoelastic response of the hydrogels. Finite element (FE) simulations were performed to verify the validity of the calibrated material coefficients by reproducing the experimental results. The excellent agreement between the experimental, analytical and numerical data proves the capability of the cavity expansion technique to measure the time-dependent behavior of viscoelastic materials.

]]>
<![CDATA[Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production]]> https://www.researchpad.co/article/5989da7eab0ee8fa60b99ab9

Microneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication techniques. Herein, we utilize a novel additive manufacturing (“3D printing”) technique called Continuous Liquid Interface Production (CLIP) to rapidly prototype sharp microneedles with tuneable geometries (size, shape, aspect ratio, spacing). This technology allows for mold-independent, one-step manufacturing of microneedle arrays of virtually any design in less than 10 minutes per patch. Square pyramidal CLIP microneedles composed of trimethylolpropane triacrylate, polyacrylic acid and photopolymerizable derivatives of polyethylene glycol and polycaprolactone were fabricated to demonstrate the range of materials that can be utilized within this platform for encapsulating and controlling the release of therapeutics. These CLIP microneedles effectively pierced murine skin ex vivo and released the fluorescent drug surrogate rhodamine.

]]>
<![CDATA[Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers]]> https://www.researchpad.co/article/5989d9e4ab0ee8fa60b6a9e6

Several researchers have studied the longitudinal chromatic aberration (LCA) of eyes implanted with an intraocular lens (IOL). We investigated the LCA of eyes implanted with yellow-colored IOLs from three different manufacturers: Alcon Inc., HOYA Corp., and AMO Inc. The number of subjects was 11, 16, and 16, respectively. The LCA of eyes implanted with SN60WF and SN60AT (Alcon Inc.), and with XY-1 (HOYA Corp.), was the same as that of phakic eyes. The LCA of eyes with ZCB00V (AMO Inc.) was smaller than that of phakic eyes. The LCA of eyes implanted with Alcon’s and HOYA’s IOLs, but not the LCA of eyes implanted with AMO’s IOLs, was positively correlated with the powers of the IOLs. We also performed simulations to verify the impacts of LCA on visual performance for 4-mm pupil diameter; the simulations were a polychromatic modulation transfer function (MTF) and a visual Strehl ratio computed on the basis of an optical transfer function (VSOTF). We concluded that the differences between the LCA of different manufacturers do not affect visual performances when some extent of higher-order aberration (HOA) exists. The smaller HOA of AMO IOLs may enhance visual performance.

]]>
<![CDATA[Accuracy of Gypsum Casts after Different Impression Techniques and Double Pouring]]> https://www.researchpad.co/article/5989da00ab0ee8fa60b73d1e

This study evaluated the accuracy of gypsum casts after different impression techniques and double pouring. Ten patients were selected and for each one it was obtained 5 partial putty/wash impressions with vinyl polysiloxane (VPS) material from teeth #13 to #16 with partial metal stock trays. The following techniques were performed: (1) one-step; two-step relief with: (2) PVC film; (3) slow-speed tungsten carbide bur and scalpel blade, (4) small movements of the tray and (5) without relief—negative control. The impressions were disinfected with 0.5% sodium hypochlorite for 10 minutes and stored during 110 and 230 minutes for the first and second pouring, respectively, with type IV gypsum. Three intra-oral lateral photographs of each patient were taken using a tripod and a customized radiographic positioner. The images were imported into ImageJ software and the total area of the buccal surface from teeth #13 to #16 was measured. A 4.0% coefficient of variance was criterion for using these measurements as Baseline values. The casts were photographed and analyzed using the same standardization for the clinical images. The area (mm2) obtained from the difference between the measurements of each gypsum cast and the Baseline value of the respective patient were calculated and analyzed by repeated-measures two way-ANOVA and Mauchly’s Sphericity test (α = 0.05). No significant effect was observed for Impression technique (P = 0.23), Second pouring (P = 0.99) and their interaction (P = 0.25). The impression techniques and double pouring did not influence the accuracy of the gypsum casts.

]]>
<![CDATA[The Flux of Euglena gracilis Cells Depends on the Gradient of Light Intensity]]> https://www.researchpad.co/article/5989da36ab0ee8fa60b86678

We have quantified the photomovement behavior of a suspension of Euglena gracilis representing a behavioral response to a light gradient. Despite recent measurements of phototaxis and photophobicity, the details of macroscopic behavior of cell photomovements under conditions of light intensity gradients, which are critical to understand recent experiments on spatially localized bioconvection patterns, have not been fully understood. In this paper, the flux of cell number density under a light intensity gradient was measured by the following two experiments. In the first experiment, a capillary containing the cell suspension was illuminated with different light intensities in two regions. In the steady state, the differences of the cell numbers in the two regions normalized by the total number were proportional to the light difference, where the light intensity difference ranged from 0.5–2.0 μmol m−2 s−1. The proportional coefficient was positive (i.e., the bright region contained many microorganisms) when the mean light intensity was weak (1.25 μmol m−2 s−1), whereas it was negative when the mean intensity was strong (13.75 μmol m−2 s−1). In the second experiment, a shallow rectangular container of the suspension was illuminated with stepwise light intensities. The cell number density distribution exhibited a single peak at the position where the light intensity was about Ic ≃ 3.8 μmol m−2 s−1. These results suggest that the suspension of E. gracilis responded to the light gradient and that the favorable light intensity was Ic.

]]>
<![CDATA[Feasibility Study on Applying Radiophotoluminescent Glass Dosimeters for CyberKnife SRS Dose Verification]]> https://www.researchpad.co/article/5989db38ab0ee8fa60bd3b62

CyberKnife is one of multiple modalities for stereotactic radiosurgery (SRS). Due to the nature of CyberKnife and the characteristics of SRS, dose evaluation of the CyberKnife procedure is critical. A radiophotoluminescent glass dosimeter was used to verify the dose accuracy for the CyberKnife procedure and validate a viable dose verification system for CyberKnife treatment. A radiophotoluminescent glass dosimeter, thermoluminescent dosimeter, and Kodak EDR2 film were used to measure the lateral dose profile and percent depth dose of CyberKnife. A Monte Carlo simulation for dose verification was performed using BEAMnrc to verify the measured results. This study also used a radiophotoluminescent glass dosimeter coupled with an anthropomorphic phantom to evaluate the accuracy of the dose given by CyberKnife. Measurements from the radiophotoluminescent glass dosimeter were compared with the results of a thermoluminescent dosimeter and EDR2 film, and the differences found were less than 5%. The radiophotoluminescent glass dosimeter has some advantages in terms of dose measurements over CyberKnife, such as repeatability, stability, and small effective size. These advantages make radiophotoluminescent glass dosimeters a potential candidate dosimeter for the CyberKnife procedure. This study concludes that radiophotoluminescent glass dosimeters are a promising and reliable dosimeter for CyberKnife dose verification with clinically acceptable accuracy within 5%.

]]>
<![CDATA[Porous Surface Modified Bioactive Bone Cement for Enhanced Bone Bonding]]> https://www.researchpad.co/article/5989da51ab0ee8fa60b8ddaf

Background

Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.

Materials and Methods

The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant–bone interface was also investigated by push-out tests.

Results

The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect.

Conclusions

Our findings suggested a new bioactive bone cement for prosthetic fixation in total joint replacement.

]]>
<![CDATA[Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf598

Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient’s age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA phantom.

]]>
<![CDATA[Optical measurements of paintings and the creation of an artwork database for authenticity]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc47a

Paintings have high cultural and commercial value, so that needs to be preserved. Many techniques have been attempted to analyze properties of paintings, including X-ray analysis and optical coherence tomography (OCT) methods, and enable conservation of paintings from forgeries. In this paper, we suggest a simple and accurate optical analysis system to protect them from counterfeit which is comprised of fiber optics reflectance spectroscopy (FORS) and line laser-based topographic analysis. The system is designed to fully cover the whole area of paintings regardless of its size for the accurate analysis. For additional assessments, a line laser-based high resolved OCT was utilized. Some forgeries were created by the experts from the three different styles of genuine paintings for the experiments. After measuring surface properties of paintings, we could observe the results from the genuine works and the forgeries have the distinctive characteristics. The forgeries could be distinguished maximally 76.5% with obtained RGB spectra by FORS and 100% by topographic analysis. Through the several executions, the reliability of the system was confirmed. We could verify that the measurement system is worthwhile for the conservation of the valuable paintings. To store the surface information of the paintings in micron scale, we created a numerical database. Consequently, we secured the databases of three different famous Korean paintings for accurate authenticity.

]]>
<![CDATA[3D-Printing for Analytical Ultracentrifugation]]> https://www.researchpad.co/article/5989da17ab0ee8fa60b7ba5f

Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation.

]]>
<![CDATA[Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcbab

To explore the potential role of polymers in the development of drug-delivery systems, this study investigated the use of β-cyclodextrin (β-CD), carboxymethyl cellulose (CMC), acrylic acid (AA) and N’ N’-methylenebis-acrylamide (MBA) in the synthesis of hydrogels for controlled drug delivery of acyclovir (ACV). Different proportions of β-CD, CMC, AA and MBA were blended with each other to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy (FTIR) revealed successful grafting of components into the polymeric network. Thermal and morphological characterization confirmed the formation of thermodynamically stable hydrogels having porous structure. The pH-responsive behaviour of hydrogels has been documented by swelling dynamics and drug release behaviour in simulated gastrointestinal fluids. Drug release kinetics revealed controlled release behaviour of the antiviral drug acyclovir in developed polymeric network. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels can be used as promising candidates for the design and development of controlled drug-delivery systems.

]]>