ResearchPad - aerosols-and-particles https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Stringent Emission Control Policies Can Provide Large Improvements in Air Quality and Public Health in India]]> https://www.researchpad.co/article/Nb1098b2b-f8d1-46e9-80dc-86448468f6a3 Air pollution is a major risk factor for human health in IndiaPopulation aging and growth will increase the disease burden due to exposure to particulate air pollution even under no emission changeStringent emission control reduces mortality rate in 2050 below 2015 levels although total premature mortality increases

]]>
<![CDATA[New Approaches to Identifying and Reducing the Global Burden of Disease From Pollution]]> https://www.researchpad.co/article/Nbf7723dd-5647-4f8e-be7f-e9600ebe8e30

Abstract

Pollution from multiple sources causes significant disease and death worldwide. Some sources are legacy, such as heavy metals accumulated in soils, and some are current, such as particulate matter. Because the global burden of disease from pollution is so high, it is important to identify legacy and current sources and to develop and implement effective techniques to reduce human exposure. But many limitations exist in our understanding of the distribution and transport processes of pollutants themselves, as well as the complicated overprint of human behavior and susceptibility.

New approaches are being developed to identify and eliminate pollution in multiple environments. Community‐scale detection of geogenic arsenic and fluoride in Bangladesh is helping to map the distribution of these harmful elements in drinking water. Biosensors such as bees and their honey are being used to measure heavy metal contamination in cities such as Vancouver and Sydney. Drone‐based remote sensors are being used to map metal hot spots in soils from former mining regions in Zambia and Mozambique. The explosion of low‐cost air monitors has allowed researchers to build dense air quality sensing networks to capture ephemeral and local releases of harmful materials, building on other developments in personal exposure sensing. And citizen science is helping communities without adequate resources measure their own environments and in this way gain agency in controlling local pollution exposure sources and/or alerting authorities to environmental hazards. The future of GeoHealth will depend on building on these developments and others to protect a growing population from multiple pollution exposure risks.

]]>
<![CDATA[WRF 1960–2014 Winter Season Simulations of Particulate Matter in the Sahel: Implications for Air Quality and Respiratory Health]]> https://www.researchpad.co/article/N4dbdd16f-7dfe-4144-8d3d-a37f1cc7a940

Abstract

We use the Weather Research and Forecast model using the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) dust module (WRF‐CHEM) to simulate the particulate matter (PM) variations in the Sahel during the winter seasons (January–March) of 1960–2014. Two simulations are undertaken where the direct aerosol feedback is turned off, and only transport is considered and where the direct aerosol feedback is turned on. We find that simulated Sahelian PM10 and PM2.5 concentrations were lower in the 1960s and after 2003 and higher during the period between 1988 and 2002. Higher Sahelian PM10 concentrations are due to stronger winds between the surface and 925 hPa over the Sahara, which transport dust into the Sahel. Negative PM10 concentration anomalies are found over the Bodele Depression and associated with weaker 925 wind anomalies after 1997 through 2014. Further west, positive PM10 concentration anomalies are found across the Adrar Plateau in the Sahara and responsible for dust transport to the Western Sahel. The North Atlantic Oscillation (NAO) is positively correlated to Sahelian dust concentrations especially during the periods of 1960–1970 and 1988–2002. The temporal/spatial patterns of PM10 concentrations have significant respiratory health implications for inhabitants of the Sahel.

]]>
<![CDATA[Impact of Deadly Dust Storms (May 2018) on Air Quality, Meteorological, and Atmospheric Parameters Over the Northern Parts of India]]> https://www.researchpad.co/article/N8387ef6b-b75b-4aaa-bb39-241535d00866

Abstract

The northern part of India, adjoining the Himalaya, is considered as one of the global hot spots of pollution because of various natural and anthropogenic factors. Throughout the year, the region is affected by pollution from various sources like dust, biomass burning, industrial and vehicular pollution, and myriad other anthropogenic emissions. These sources affect the air quality and health of millions of people who live in the Indo‐Gangetic Plains. The dust storms that occur during the premonsoon months of March–June every year are one of the principal sources of pollution and originate from the source region of Arabian Peninsula and the Thar desert located in north‐western India. In the year 2018, month of May, three back‐to‐back major dust storms occurred that caused massive damage, loss of human lives, and loss to property and had an impact on air quality and human health. In this paper, we combine observations from ground stations, satellites, and radiosonde networks to assess the impact of dust events in the month of May 2018, on meteorological parameters, aerosol properties, and air quality. We observed widespread changes associated with aerosol loadings, humidity, and vertical advection patterns with displacements of major trace and greenhouse gasses. We also notice drastic changes in suspended particulate matter concentrations, all of which can have significant ramifications in terms of human health and changes in weather pattern.

]]>
<![CDATA[Hybrid Mass Balance/4D‐Var Joint Inversion of NO x and SO 2 Emissions in East Asia]]> https://www.researchpad.co/article/Ne104e45a-33d7-45d3-b79c-9974fe345cef

Abstract

Accurate estimates of NOx and SO2 emissions are important for air quality modeling and management. To incorporate chemical interactions of the two species in emission estimates, we develop a joint hybrid inversion framework to estimate their emissions in China and India (2005–2012). Pseudo observation tests and posterior evaluation with surface measurements demonstrate that joint assimilation of SO2 and NO2 can provide more accurate constraints on emissions than single‐species inversions. This occurs through synergistic change of O3 and OH concentrations, particularly in conditions where satellite retrievals of the species being optimized have large uncertainties. The percentage changes of joint posterior emissions from the single‐species posterior emissions go up to 242% at grid scales, although the national average of monthly emissions, seasonality, and interannual variations are similar. In China and India, the annual budget of joint posterior SO2 emissions is lower, but joint NOx posterior emissions are higher, because NOx emissions increase to increase SO2 concentration and better match Ozone Monitoring Instrument SO2 observations in high‐NOx regions. Joint SO2 posterior emissions decrease by 16.5% from 2008 to 2012, while NOx posterior emissions increase by 24.9% from 2005 to 2011 in China—trends which are consistent with the MEIC inventory. Joint NOx and SO2 posterior emissions in India increase by 15.9% and 19.2% from 2005 to 2012, smaller than the 59.9% and 76.2% growth rate using anthropogenic emissions from EDGARv4.3.2. This work shows the benefit and limitation of joint assimilation in emission estimates and provides an efficient framework to perform the inversion.

]]>
<![CDATA[SO 2 Emission Estimates Using OMI SO 2 Retrievals for 2005–2017]]> https://www.researchpad.co/article/N6a783255-8e13-48df-b62e-7af6e7554ff5

Abstract

SO2 column densities from Ozone Monitoring Instrument provide important information on emission trends and missing sources, but there are discrepancies between different retrieval products. We employ three Ozone Monitoring Instrument SO2 retrieval products (National Aeronautics and Space Administration (NASA) standard (SP), NASA prototype, and BIRA) to study the magnitude and trend of SO2 emissions. SO2 column densities from these retrievals are most consistent when viewing angles and solar zenith angles are small, suggesting more robust emission estimates in summer and at low latitudes. We then apply a hybrid 4D‐Var/mass balance emission inversion to derive monthly SO2 emissions from the NASA SP and BIRA products. Compared to HTAPv2 emissions in 2010, both posterior emission estimates are lower in United States, India, and Southeast China, but show different changes of emissions in North China Plain. The discrepancies between monthly NASA and BIRA posterior emissions in 2010 are less than or equal to 17% in China and 34% in India. SO2 emissions increase from 2005 to 2016 by 35% (NASA)–48% (BIRA) in India, but decrease in China by 23% (NASA)–33% (BIRA) since 2008. Compared to in situ measurements, the posterior GEOS‐Chem surface SO2 concentrations have reduced NMB in China, the United States, and India but not in South Korea in 2010. BIRA posteriors have better consistency with the annual growth rate of surface SO2 measurement in China and spatial variability of SO2 concentration in China, South Korea, and India, whereas NASA SP posteriors have better seasonality. These evaluations demonstrate the capability to recover SO2 emissions using Ozone Monitoring Instrument observations.

]]>
<![CDATA[Anthropogenic Aerosol Indirect Effects in Cirrus Clouds]]> https://www.researchpad.co/article/5c75659bd5eed0c484cbe366

Abstract

We have implemented a parameterization for forming ice in large‐scale cirrus clouds that accounts for the changes in updrafts associated with a spectrum of waves acting within each time step in the model. This allows us to account for the frequency of homogeneous and heterogeneous freezing events that occur within each time step of the model and helps to determine more realistic ice number concentrations as well as changes to ice number concentrations. The model is able to fit observations of ice number at the lowest temperatures in the tropical tropopause but is still somewhat high in tropical latitudes with temperatures between 195°K and 215°K. The climate forcings associated with different representations of heterogeneous ice nuclei (IN or INPs) are primarily negative unless large additions of IN are made, such as when we assumed that all aircraft soot acts as an IN. However, they can be close to zero if it is assumed that all background dust can act as an INP irrespective of how much sulfate is deposited on these particles. Our best estimate for the forcing of anthropogenic aircraft soot in this model is −0.2 ± 0.06 W/m2, while that from anthropogenic fossil/biofuel soot is −0.093 ± 0.033 W/m2. Natural and anthropogenic open biomass burning leads to a net forcing of −0.057 ± 0.05 W/m2.

]]>