ResearchPad - agricultural-science https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Effect of stocking density and effective fiber on the ruminal bacterial communities in lactating Holstein cows]]> https://www.researchpad.co/article/elastic_article_12825 Overstocking can be a major issue in the dairy cattle industry, leading to negative changes in feeding and resting behavior. Additional stress imposed and alterations in feeding behavior may significantly impact the rumen microbiome. The rumen microbiome is responsible for the successful conversion of feed to usable energy for its host. Thus, understanding the effects of stocking density on the rumen microbiome is imperative for further elucidation of potentially negative consequences of overstocking in dairy cattle. This study implemented a Latin Square design accounting for four pens of cattle and four treatment periods so that all treatment combinations were assigned to every pen during one period of the study. Two treatment factors, including two levels of physically effective neutral detergent fiber, achieved with addition of chopped straw, and stocking density (100% vs. 142%) of freestalls and headlocks, were combined and tested within a factorial treatment design. Within each pen, three or four cannulated cows (n = 15 total) were sampled for rumen content on the final day of each treatment period. Each treatment was randomly assigned to a single pen for a 14-day period. The V1–V3 hypervariable regions of the 16S rRNA gene were targeted for bacterial analyses. Variables with approximately normally-distributed residuals and a Shapiro–Wilk statistic of ≥0.85 were analyzed using a mixed model analysis of variance with the GLIMMIX procedure with fixed effects of feed (straw vs. no straw), stocking density (100% vs. 142%), and the interaction of feed × stocking density, and random effects of pen, period, feed × stocking × pen × period. Pen was included as the experimental unit in a given period and the sampling unit as cow. Variables included Shannon’s Diversity Index, Faith’s phylogenetic diversity index, chao1, observed OTU, and Simpson’s evenness E as well as most individual taxa. Data were analyzed in SAS 9.4 utilizing the GLIMMIX procedure to perform mixed model analysis of variance. If data were not normally distributed, a ranked analysis was performed. No differences were observed in α-diversity metrics by fiber or stocking density (P > 0.05). Beta diversity was assessed using weighted and unweighted Unifrac distances in QIIME 1.9.1 and analyzed using ANOSIM. No differences were observed in weighted (P = 0.6660; R = −0.0121) nor unweighted (P = 0.9190; R = −0.0261) metrics and R values suggested similar bacterial communities among treatments. At the phylum level, Tenericutes differed among treatments with an interaction of stocking density by feed (P = 0.0066). At the genus level, several differences were observed by treatment, including Atopobium (P = 0.0129), unidentified members of order RF39 (P = 0.0139), and unidentified members of family Succinivibrionaceae (P = 0.0480). Although no diversity differences were observed, taxa differences may indicate that specific taxa are affected by the treatments, which may, in turn, affect animal production.

]]>
<![CDATA[Soil water consumption, water use efficiency and winter wheat production in response to nitrogen fertilizer and tillage]]> https://www.researchpad.co/article/elastic_article_12769 Sustainability of winter wheat yield under dryland conditions depends on improving soil water stored during fallow and its efficient use. A 3-year field experiment was conducted in Loess Plateau to access the effect of tillage and N (nitrogen) rates on soil water, N distribution and water- and nitrogen-use efficiency of winter wheat. Deep tillage (DT, 25–30 cm depth) and no-tillage (NT) were operated during fallow season, whereas four N rates (0, 90, 150 and 210 kg ha−1) were applied before sowing. Rates of N and variable rainfall during summer fallow period led to the difference of soil water storage. Soil water storage at anthesis and maturity was decreased with increasing N rate especially in the year with high precipitation (2014–2015). DT has increased the soil water storage at sowing, N content, numbers of spike, grain number, 1,000 grain weight, grain yield, and water and N use efficiency as compared to NT. Grain yield was significantly and positively related to soil water consumption at sowing to anthesis and anthesis to maturity, total plant N, and water-use efficiency. Our study implies that optimum N rate and deep tillage during the fallow season could improve dryland wheat production by balancing the water consumption and biomass production.

]]>
<![CDATA[Stomatal conductance bears no correlation with transpiration rate in wheat during their diurnal variation under high air humidity]]> https://www.researchpad.co/article/elastic_article_11279 A good understanding of the response of photosynthesis rate (PN) and transpiration rate (Tr) to stomatal alteration during the diurnal variations is important to cumulative photosynthetic production and water loss of crops. Six wheat genotypes were studied for 2 years with pot cultivation in rain-shelter. Among different genotypes, stomatal conductance (gs) was significantly correlated with both PN and Tr. But for each genotype, though gs was significantly correlated with PN regardless of relative air humidity (RH) status and it was also significantly correlated with Tr under lower RH (LRH, 15.4%) and moderate RH (MRH, 28.3%), it was not correlated with Tr under higher RH (HRH, 36.7%) during the diurnal changes. The conditional correlation between gs and Tr of wheat evoked new thinking on the relationships among gs, PN and Tr. Path analysis was further carried out to clarify the correlations of gs with the four atmospheric factors, that of Tr with gs and the four factors and the direct and indirect effects of the factors, during their diurnal dynamic variation. The effects of these factors on gs or Tr were related to RH. All the four factors had a much higher correlation with gs under HRH than that under LRH and MRH. Air temperature (T) had a rather higher direct effect than RH and photosynthetically active radiation (PAR). Also, the other factors had a much higher indirect effect on gs through vapor pressure deficit (VPD) and T. Transpiration rate was highly correlated with gs under LRH and MRH, with gs having a higher direct effect on it. In comparison, Tr was not correlated with gs under HRH but highly correlated with the atmospheric factors, with T, RH, and PAR having a higher indirect effect through VPD.

]]>
<![CDATA[Effects of rumen bypass melatonin feeding (RBMF) on milk quality and mastitis of Holstein cows]]> https://www.researchpad.co/article/elastic_article_8332 Cow mastitis is a major problem frequently encountered by dairy farmers and it is manifested by the high number of somatic cells and the low quality of the milk. The conventional treatment for mastitis is use of antibiotics. In the current study, a new approach is applied to target this disorder: rumen bypass melatonin feeding (RBMF). The RBMF significantly reduced milk somatic cell count and improved milk nutritional values with the elevated protein, fat and dry matter levels. This approach also suppresses the stress and proinflammatory responses of the cows indicated by the reduced serum cortisol, TNF-α and IL-6 and increased IL-10 levels. Importantly, the beneficial effects of RBMF have lasted for several days after termination of the treatment. The effects of melatonin on the mastitis are probably attributed to the antioxidant and anti-inflammatory activities of melatonin. Considering the none or low toxicity of melatonin to organisms and the no invasive nature of this approach, we recommend that RBMF could be used in large scale in the dairy farming to target the cow mastitis.

]]>
<![CDATA[Genome-wide identification and characterization of TCP family genes in <i>Brassica juncea</i> var. tumida]]> https://www.researchpad.co/article/elastic_article_8329 Teosinte branched1/Cycloidea/proliferating cell factors (TCPs) are plant-specific transcription factors widely involved in leaf development, flowering, shoot branching, the circadian rhythm, hormone signaling, and stress responses. However, the TCP function in Brassica juncea var. tumida, the tumorous stem mustard, has not yet been reported. This study identified and characterized the entire TCP family members in B. juncea var. tumida.MethodsWe identified 62 BjTCP genes from the B. juncea var. tumida genome and analyzed their phylogenetic relationship, gene structure, protein motifs, chromosome location, and expression profile in different tissues.ResultsOf the 62 BjTCP genes we identified in B. juncea var. tumida, containing 34 class I and 28 class II subfamily members, 61 were distributed on 18 chromosomes. Gene structure and conserved motif analysis showed that the same clade genes displayed a similar exon/intron gene structure and conserved motifs. Cis-acting element results showed that the same clade genes also had a similar cis-acting element; however, subtle differences implied a different regulatory pathway. The BjTCP18s members were low-expressed in Dayejie strains and the unswelling stage of Yonganxiaoye strains. Treatment with gibberellin (GA) and salicylic acid (SA) showed that GA and SA affect the expression levels of multiple TCP genes.ConclusionWe performed the first genome-wide analysis of the TCP gene family of B. juncea var. tumida. Our results have provided valuable information for understanding the classification and functions of TCP genes in B. juncea var. tumida. ]]> <![CDATA[A new species of <i>Cenopalpus</i> Pritchard &amp; Baker (Acari: Tenuipalpidae) from Japan, with ontogeny of chaetotaxy and a key to the world species]]> https://www.researchpad.co/article/N8179289f-7933-4eb0-92ba-b50426ec4032 A new species of flat mite, Cenopalpus umbellatus sp. nov. (Acari: Trombidiformes: Tenuipalpidae) is described and illustrated based on females, males, deutonymphs, protonymphs and larvae. The morphological ontogeny in idiosomal and leg chaetotaxy is briefly described for all stages. Mite specimens were collected from the leaves of Rhaphiolepis indica var. umbellata Makino (Rosaceae), an evergreen shrub native to Japan. An identification key to the world species of Cenopalpus is also provided.

]]>
<![CDATA[Ooctonus vulgatus (Hymenoptera, Mymaridae), a potential biocontrol agent to reduce populations of Philaenus spumarius (Hemiptera, Aphrophoridae) the main vector of Xylella fastidiosa in Europe]]> https://www.researchpad.co/article/N503c34c3-73c7-4316-aa36-d8ecad427c59

As a vector of Xylella fastidiosa (Wells, 1987) in Europe, the meadow spittlebug Philaenus spumarius (Linnaeus, 1758) (Hemiptera, Aphrophoridae) is a species of major concern. Therefore, tools and agents to control this ubiquitous insect that develops and feeds on hundreds of plant species are wanted. We conducted a field survey of P. spumarius eggs in Corsica and provide a first report of Ooctonus vulgatus Haliday, 1833 (Hymenoptera, Mymaridae) as a potential biocontrol agent of P. spumarius in Europe. To allow species identification, we summarized the main characters distinguishing O. vulgatus from other European species of Ooctonus and generated COI DNA barcodes. Parasitism rates were variable in the four localities included in the survey but could reach 69% (for an average number of eggs that hatched per locality of 109). Based on the geographic occurrences of O. vulgatus obtained from the literature, we calibrated an ecological niche model to assess its potential distribution in the Holarctic. Obviously, several questions need to be addressed to determine whether O. vulgatus could become an effective biocontrol agent of P. spumarius in Europe. So far, O. vulgatus has been reared only from P. spumarius eggs, but its exact host-range should be evaluated to ensure efficiency and avoid non-target effect. The top-down impact of the parasitoid on vector populations should also be assessed on large data sets. Finally, the feasibility of mass rearing should be tested. We hope this report serves as a starting point to initiate research on this parasitoid wasp to assess whether it could contribute to reduce the spread and impact of X. fastidiosa in Europe.

]]>
<![CDATA[Potential of the economic valuation of soil-based ecosystem services to inform sustainable soil management and policy]]> https://www.researchpad.co/article/N930fd381-1759-4342-9b07-449675973e96

The concept of ecosystem services, especially in combination with economic valuation, can illuminate trade-offs involved in soil management, policy and governance, and thus support decision making. In this paper, we investigate and highlight the potential and limitations of the economic valuation of soil-based ecosystem services to inform sustainable soil management and policy. We formulate a definition of soil-based ecosystem services as basis for conducting a review of existing soil valuation studies with a focus on the inclusion of ecosystem services and the choice of valuation methods. We find that, so far, the economic valuation of soil-based ecosystem services has covered only a small number of such services and most studies have employed cost-based methods rather than state-of-the-art preference-based valuation methods, even though the latter would better acknowledge the public good character of soil related services. Therefore, the relevance of existing valuation studies for political processes is low. Broadening the spectrum of analyzed ecosystem services as well as using preference-based methods would likely increase the informational quality and policy relevance of valuation results. We point out options for improvement based on recent advances in economic valuation theory and practice. We conclude by investigating the specific roles economic valuation results can play in different phases of the policy-making process, and the specific requirements for its usefulness in this context.

]]>
<![CDATA[Proximate composition, functional properties and quantitative analysis of benzoyl peroxide and benzoic acid in wheat flour samples: effect on wheat flour quality]]> https://www.researchpad.co/article/N0736ec7d-e38f-4e4c-ab71-fcfab2852b5d

Background

Extensive milling processes have deprived wheat flour from essential nutrients. The objective of the current study was to assess the nutritive quality of commercial wheat flour (soft flour (SF)) through analyses of proximate composition and functional properties as well as quantification of benzoyl peroxide (BPO; added as bleaching agent in the SF) by comparing the results with whole wheat flour (WF; never received any additives).

Methods

The samples included commercial SF purchased from the local supplier of different flour mills (who use BPO as additive) and a control sample without additives was prepared by grinding the seeds harvested from wheat (Triticum aestivum L.; Inqulab 91) crop grown in the experimental field of University of Agriculture, Faisalabad, under optimized field conditions without any fertilizers and insecticides. Functional properties (including bulk density, water absorption capacity, oil absorption capacity, emulsifying activity, foaming capacity, least gelatinization concentration and gelatinization temperature) and proximate composition (including moisture content, ash contents, crude protein, gluten and starch contents) were determined and compared for all the samples. Benzoyl peroxide (BPO) and Benzoic Acid (BA) quantification was performed through High Performance Liquid Chromatography. Finally dietary intake was estimated for BPO and BA.

Results

Results showed that SF had lesser fiber, protein and ash contents, whereas, higher damaged starch, fat, gluten and bulk density. A parallel experiment under selected conditions (temperature, time and solute concentration) showed dissociation of BPO into BA soon after the exposure. Observed BA range (13.77 mg/g after 16 h) in SF and exposure level assessment (44.3 ± 1.36 mg/kg/BW) showed higher intake of BA on the consumption of SF. The results revealed the superiority of WF over SF in nutritive qualities as well as free of toxicants such as BA.

]]>
<![CDATA[Long-term impact of a 4-day feed restriction at the protozoea stage on metabolic gene expressions of whiteleg shrimp (Litopenaeus vannamei)]]> https://www.researchpad.co/article/Nc9d1ca49-6d28-4edb-8edf-94e3b420d66a

Based on the “nutritional programming” concept, we evaluated the long-term effects of an early four-day caloric restriction (40% reduction in feed allowance compared to a normal feeding level) at the protozoea stage in whiteleg shrimp. We analyzed long-term programming of shrimp by studying metabolism at the molecular level, through RT-qPCR of key biomarkers (involved in intermediary metabolism and digestion). The mRNA levels (extracted from the whole body) were analyzed after the stimulus and after the rearing period, at 20 and 35 days, respectively. At the end of the experimental period, shrimp growth performance was evaluated. There was no difference between normal feed allowance (CTL) and feed-restricted shrimp (RES) for performance parameters (survival, final body weight and the number of post-larvae g−1 or PL g−1). The stimulus directly affected the mRNA levels for only two genes, i.e., preamylase and lvglut 2 which were expressed at higher levels in feed-restricted shrimp. In the long-term, higher levels of mRNAs for enzymes coding for glycolysis and ATP synthesis were also detected. This suggests a possible long-term modification of the metabolism that is linked to the stimulus at the protozoea stage. Overall, further studies are needed to improve nutritional programming in shrimp.

]]>
<![CDATA[PigLeg: prediction of swine phenotype using machine learning]]> https://www.researchpad.co/article/N823fa3cb-5286-4b44-9d39-27d7bb6cdb07

Industrial pig farming is associated with negative technological pressure on the bodies of pigs. Leg weakness and lameness are the sources of significant economic loss in raising pigs. Therefore, it is important to identify the predictors of limb condition. This work presents assessments of the state of limbs using indicators of growth and meat characteristics of pigs based on machine learning algorithms. We have evaluated and compared the accuracy of prediction for nine ML classification algorithms (Random Forest, K-Nearest Neighbors, Artificial Neural Networks, C50Tree, Support Vector Machines, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) and have identified the Random Forest and K-Nearest Neighbors as the best-performing algorithms for predicting pig leg weakness using a small set of simple measurements that can be taken at an early stage of animal development. Measurements of Muscle Thickness, Back Fat amount, and Average Daily Gain were found to be significant predictors of the conformation of pig limbs. Our work demonstrates the utility and relative ease of using machine learning algorithms to assess the state of limbs in pigs based on growth rate and meat characteristics.

]]>
<![CDATA[Impact of Phellinus gilvus mycelia on growth, immunity and fecal microbiota in weaned piglets]]> https://www.researchpad.co/article/N29e6fa4b-e2c8-4f6d-9177-b56d8a78ff78

Background

Antibiotics are the most commonly used growth-promoting additives in pig feed especially for weaned piglets. But in recent years their use has been restricted because of bacterial resistance. Phellinus, a genus of medicinal fungi, is widely used in Asia to treat gastroenteric dysfunction, hemrrhage, and tumors. Phellinus is reported to improve body weight on mice with colitis. Therefore, we hypothesize that it could benefit the health and growth of piglets, and could be used as an alternative to antibiotic. Here, the effect of Phellinus gilvus mycelia (SH) and antibiotic growth promoter (ATB) were investigated on weaned piglets.

Methods

A total of 72 crossbred piglets were randomly assigned to three dietary treatment groups (n = 4 pens per treatment group with six piglets per pen). The control group was fed basal diet; the SH treatment group was fed basal diet containing 5 g/kg SH; the ATB treatment group was feed basal diet containing 75 mg/kg aureomycin and 20 mg/kg kitasamycin. The experiment period was 28 days. Average daily gain (ADG), average daily feed intake (ADFI), and feed intake to gain ratio were calculated. The concentrations of immunoglobulin G (IgG), interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α and myeloperoxidase (MPO) in serum were assessed. Viable plate counts of Escherichia coli in feces were measured. Fecal microbiota was analyzed via the 16S rRNA gene sequencing method.

Results

The ADG (1–28 day) of piglets was significantly higher in SH and ATB treatment groups (P < 0.05) compared to the control, and the ADG did not show significant difference between SH and ATB treatment groups (P > 0.05). Both SH and ATB treatments increased the MPO, IL-1β, and TNF-α levels in serum compared to the control (P < 0.05), but the levels in SH group were all significantly higher than in the ATB group (P < 0.05). Fecal microbiological analysis showed that viable E. coli counts were dramatically decreased by SH and ATB. The 16S rRNA gene sequencing analysis showed that ATB shifted the microbiota structure drastically, and significantly increased the relative abundance of Prevotella, Megasphaera, and Faecalibacterium genera. But SH slightly influenced the microbiota structure, and only increased the relative abundance of Alloprevotella genus.

Conclusion

Our work demonstrated that though SH slightly influenced the microbiota structure, it markedly reduced the fecal E. coli population, and improved growth and innate immunity in piglets. Our finding suggested that SH could be an alternative to ATB in piglet feed.

]]>
<![CDATA[Estimation of soil salt content by combining UAV-borne multispectral sensor and machine learning algorithms]]> https://www.researchpad.co/article/N794eaa1f-1abe-45a2-a5c3-7892b7f2c9aa

Soil salinization is a global problem closely related to the sustainable development of social economy. Compared with frequently-used satellite-borne sensors, unmanned aerial vehicles (UAVs) equipped with multispectral sensors provide an opportunity to monitor soil salinization with on-demand high spatial and temporal resolution. This study aims to quantitatively estimate soil salt content (SSC) using UAV-borne multispectral imagery, and explore the deep mining of multispectral data. For this purpose, a total of 60 soil samples (0–20 cm) were collected from Shahaoqu Irrigation Area in Inner Mongolia, China. Meanwhile, from the UAV sensor we obtained the multispectral data, based on which 22 spectral covariates (6 spectral bands and 16 spectral indices) were constructed. The sensitive spectral covariates were selected by means of gray relational analysis (GRA), successive projections algorithm (SPA) and variable importance in projection (VIP), and from these selected covariates estimation models were built using back propagation neural network (BPNN) regression, support vector regression (SVR) and random forest (RF) regression, respectively. The performance of the models was assessed by coefficient of determination (R2), root mean squared error (RMSE) and ratio of performance to deviation (RPD). The results showed that the estimation accuracy of the models had been improved markedly using three variable selection methods, and VIP outperformed GRA and GRA outperformed SPA. However, the model accuracy with the three machine learning algorithms turned out to be significantly different: RF > SVR > BPNN. All the 12 SSC estimation models could be used to quantitatively estimate SSC (RPD > 1.4) while the VIP-RF model achieved the highest accuracy (Rc2 = 0.835, RP2 = 0.812, RPD = 2.299). The result of this study proved that UAV-borne multispectral sensor is a feasible instrument for SSC estimation, and provided a reference for further similar research.

]]>
<![CDATA[Identification and expression analysis of the DREB transcription factor family in pineapple (Ananas comosus (L.) Merr.)]]> https://www.researchpad.co/article/Na8e17d7a-5860-4c1a-80b8-007e7871d177

Background

Dehydration responsive element-binding (DREB) transcription factors play a crucial role in plant growth, development and stress responses. Although DREB genes have been characterized in many plant species, genome-wide identification of the DREB gene family has not yet been reported in pineapple (Ananas comosus (L.) Merr.).

Results

Using comprehensive genome-wide screening, we identified 20 AcoDREB genes on 14 chromosomes. These were categorized into five subgroups. AcoDREBs within a group had similar gene structures and domain compositions. Using gene structure analysis, we showed that most AcoDREB genes (75%) lacked introns, and that the promoter regions of all 20 AcoDREB genes had at least one stress response-related cis-element. We identified four genes with high expression levels and six genes with low expression levels in all analyzed tissues. We detected expression changes under abiotic stress for eight selected AcoDREB genes.

Conclusions

This report presents the first genome-wide analysis of the DREB transcription factor family in pineapple. Our results provide preliminary data for future functional analysis of AcoDREB genes in pineapple, and useful information for developing new pineapple varieties with key agronomic traits such as stress tolerance.

]]>
<![CDATA[Long-term continuously monocropped peanut significantly changed the abundance and composition of soil bacterial communities]]> https://www.researchpad.co/article/N2b441e4b-bf77-472a-8f83-cfd091e8da1e

Soil sickness is the progressive loss of soil quality due to continuous monocropping. The bacterial populations are critical to sustaining agroecosystems, but their responses to long-term peanut monocropping have not been determined. In this study, based on a previously constructed gradient of continuous monocropped plots, we tracked the detailed feedback responses of soil bacteria to short- and long-term continuous monocropping of four different peanut varieties using high-throughput sequencing techniques. The analyses showed that soil samples from 1- and 2-year monocropped plots were grouped into one class, and samples from the 11- and 12-year plots were grouped into another. Long-term consecutive monocropping could lead to a general loss in bacterial diversity and remarkable changes in bacterial abundance and composition. At the genera level, the dominant genus Bacillus changed in average abundance from 1.49% in short-term monocropping libraries to 2.96% in the long-term libraries. The dominant species Bacillus aryabhattai and Bacillus funiculus and the relatively abundant species Bacillus luciferensis and Bacillus decolorationis all showed increased abundance with long-term monocropping. Additionally, several other taxa at the genus and species level also presented increased abundance with long-term peanut monocropping; however, several taxa showed decreased abundance. Comparing analyses of predicted bacterial community functions showed significant changes at different KEGG pathway levels with long-term peanut monocropping. Combined with our previous study, this study indicated that bacterial communities were obviously influenced by the monocropping period, but less influenced by peanut variety and growth stage. Some bacterial taxa with increased abundance have functions of promoting plant growth or degrading potential soil allelochemicals, and should be closely related with soil remediation and may have potential application to relieve peanut soil sickness. A decrease in diversity and abundance of bacterial communities, especially beneficial communities, and simplification of bacterial community function with long-term peanut monocropping could be the main cause of peanut soil sickness.

]]>
<![CDATA[Heavy metal accumulation potential in pomegranate fruits and leaves grown in roadside orchards]]> https://www.researchpad.co/article/N7952b704-fd03-48ec-8d10-c0678e1ecb54

This study was carried out to determine the possible heavy metal accumulation in fruits and leaves of Zivzik pomegranate (Punica granatum L.) grown in two different roadside orchards located in Pirinçli and Kapılı villages of Siirt province, Turkey. Leaf and fruit samples were collected from trees located at 0, 50, 100 m distances from the main roads. Plant samples were analyzed for cobalt (Co), nickel (Ni), cadmium (Cd), lead (Pb) and chromium (Cr) concentrations. The Co, Ni, Cd, Pb and Cr concentrations of fruit samples collected from Pirinçli village were ranged from 0.082 to 0.238 mg kg−1, from 1.160 to 1.559 mg kg−1, from 0.087 to 0.179 mg kg−1, 0.326 to 0.449 mg kg−1 and 0.606 to 1.054 mg kg−1, respectively. The Co, Ni, Cd, Pb and Cr concentrations of fruit samples from Kapılı village were between 0.085 and 0.137 mg kg−1, 1.042 and 1.123 mg kg−1, 0.037 and 0.076 mg kg−1, 0.277 and 0.520 mg kg−1 and 0.762 and 0.932 mg kg−1, respectively. Heavy metal concentrations of leaf samples from Pirinçli village varied from 0.191 to 0.227 mg Co kg−1, 2.201 to 3.547 mg Ni kg−1, 0.051 to 0.098 mg Cd kg−1, 0.535 to 0.749 mg Pb kg−1 and from 1.444 to 2.017 mg Cr kg−1. Similarly, the heavy metal concentration of leaf samples from Kapılı villages were between 0.213 and 0.217 mg Co kg−1, 2.160 and 2.511 mg Ni kg−1, 0.058 and 0.114 mg Cd kg−1, 0.579 and 0.676 mg Pb kg−1 and 1.688 and 1.518 mg Cr kg−1. The Co, Ni and Cr concentrations in fruit samples collected from 0, 50 and 100 meters to the main road in Pirinçli village were at statistically significant level, while only Ni concentration in leaf samples collected from 0, 50 and 100 meters to the main road was at significant level. In contrast, heavy metal concentrations in fruit and leaf samples collected from 0, 50 and 100 m to the main road in Kapılı village were not statistically significant level.

]]>
<![CDATA[Dynamic changes in intestinal microbiota in young forest musk deer during weaning]]> https://www.researchpad.co/article/Nb5e63058-fd58-46c0-a479-bf0d30e58298

Weaning is an important event for all mammals, including young forest musk deer. However, weaning stress may cause intestinal microbiota-related disorders. Therefore, high-throughput 16S rRNA gene sequencing was applied to study the dynamic changes in intestinal microbiota during pre-weaning (10 days before weaning) and post-weaning (10 days after weaning) in 15 young forest musk deer. We saw that intestinal microbiota diversity in the post-weaning period was significantly higher than that in the pre-weaning period. The most dominant bacterial phyla were similar in the two groups (Firmicutes, Bacteroidetes and Verrucomicrobia). Meanwhile, we applied Linear discriminant analysis effect size (LefSe) to identify the most differentially microbial taxa in the pre-weaning and post-weaning groups. In the post-weaning forest musk deer, the relative abundance of Actinobacteria, Spirochaetes, Ruminococcaceae_UCG-005, Treponema and Prevotella was higher than in the pre-weaning group. However, higher relative abundance of the phyla Bacteroidetes was found in the pre-weaning group compared with that in the post-weaning group. In summary, this research provides a theoretical foundation for the dynamics of young forest musk deer intestinal microbiota during the weaning transition, which may benefit in understanding the growth and health of forest musk deer.

]]>
<![CDATA[Response of organic carbon mineralization and bacterial communities to soft rock additions in sandy soils]]> https://www.researchpad.co/article/N53673125-b747-4f96-9f02-9d5ce7e4a1d8

Bacteria play a vital role in biotransformation of soil organic carbon (SOC). However, mechanisms of bacterium and organic carbon mineralization remain unclear during improvement of sandy soil using soft rock additions. In this study, four treatments with differing ratios of soft rock to sand of 0:1 (CK), 1:5 (C1), 1:2 (C2) and 1:1 (C3) were selected for mineralization incubation and high-throughput sequencing. The results showed that SOC, total nitrogen (TN), available phosphorus (AP), nitrate nitrogen (NO[TeX:] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}${}_{3}^{-}$\end{document}3-N), and mass water content (WC) of sandy soil increased significantly after addition of soft rock (P < 0.05). Compared with the CK treatment, cumulative mineralization and potential mineralized organic carbon content of C1, C2 and C3 increased by 71.79%–183.86% and 71.08%–173.33%. The cumulative mineralization rates of organic carbon treated with C1 and C2 were lower, 16.96% and 17.78%, respectively (P > 0.05). The three dominant bacteria were Actinobacteria, Proteobacteria and Chloroflexi, among which Proteobacteria was negatively correlated with mineralization of organic carbon (P < 0.01). The mineralization rate constant (k) was positively correlated and negatively correlated with Cyanobacteria and Nitrospirae, respectively. Under C2 treatment, Proteobacteria and Nitrospirae had the largest increase, and Cyanobacteria had the largest decrease. Compared with other treatments, C2 treatment significantly increased bacterial diversity index, richness index and evenness index, and the richness index had a negative correlation with k value. In conclusion, when the ratio of soft rock to sand was 1:2, the k of SOC could be reduced. In addition, the retention time of SOC can be increased, and resulting carbon fixation was improved.

]]>
<![CDATA[Estimation of nitrogen leaching load from agricultural fields in the Puck Commune with an interactive calculator]]> https://www.researchpad.co/article/Na6c604bb-8649-4c15-a748-d3f79bf681dc

Background

Nutrient leaching from agricultural fields is one of the main causes of pollution and eutrophication of the Baltic Sea. The quantity of nitrogen (N) leached from a particular field can be very different from the amount of N leached from other fields in a given region or even within a single farm. Therefore, it is necessary to estimate the quantity of N leached for each field separately.

Methods

An opinion poll has been conducted on 31 farms within the Puck Commune, which is approximately 3.6% of all farms located in this commune. Farmers provided data on the manner of fertilizing and cultivating crops on all their farms. For each field individually, on the basis of collected data, an estimated amount of the N leaching from the field has been determined.

Results

An interactive calculator to assist farmers in determining the quantity of N leaching from the agricultural field has been developed. The influence of factors shaping the amount of N leaching from a single field has been analyzed, and it has been determined that autumn plowing (specifically its absence) and the type of cultivated soil had the greatest average influence on this value in the studied sample.

Discussion

Due to the possible ways of reducing N leaching from agricultural fields, most of the studied fields were fertilized in an appropriate manner. However, in the studied sample there were fields for which the fertilization intensity significantly exceeded the recommended doses. In this context, a tool in the form of an interactive, easy-to-use N leaching calculator should help farmers to select appropriate doses and optimal fertilization practices.

]]>
<![CDATA[Role of salicylic acid in regulating ethylene and physiological characteristics for alleviating salinity stress on germination, growth and yield of sweet pepper]]> https://www.researchpad.co/article/Nd2b3895c-927e-4b32-a53a-b96c55f8b683

Background

During a preliminary study, effects of 0, 20, 40, and 60 mM NaCl salinity were assessed on germination rate in relation to electrolyte leakage (EL) in sweet pepper. Results explored significant rises in ethylene evolution from seeds having more EL. It was, therefore, hypothesized that excessive ethylene biosynthesis in plants due to salinity stress might be a root cause of low crop productivity. As salicylic acid is one of the potent ethylene inhibitors, thus SA was used to combat effects of ethylene produced under salinity stress of 60 mM NaCl on different physiological and morphological characteristics of sweet pepper.

Methodology

The effect of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 mM SA was evaluated on seed germination, growth and yield of sweet pepper cv. Yolo wonder at salinity stress on 60 mM NaCl. Seeds were primed with SA concentrations and incubated till 312 h in an incubator to study germination. Same SA concentrations were sprayed on foliage of plants grown in saline soil (60 mM NaCl).

Results

Seeds primed by 0.2 to 0.3 mM SA improved germination rate by 33% due to suppression of ethylene from 3.19 (control) to 2.23–2.70 mg plate−1. Electrolyte leakage reduced to 20.8–21.3% in seeds treated by 0.2–0.3 mM SA compared to 39.9% in untreated seeds. Results also explored that seed priming by 0.3 mM improved TSS, SOD and chlorophyll contents from 13.7 to 15.0 mg g−1 FW, 4.64 to 5.38 activity h−1 100 mg−1 and 89 to 102 ug g−1 compared to untreated seeds, respectively. Results also explore that SA up to 0.2 mM SA applied on plant foliage improved LAI (5–13%), photosynthesis (4–27%), WUE (11–57%), dry weight (5–20%), SOD activity (4–20%) and finally fruit yield (4–20%) compared to untreated plants by ameliorating effect of 60 mM NaCl. Foliar application of SA also caused significant increase in nutrient use efficiency due to significant variations in POD and SOD activities.

Conclusion

Salicylic acid suppressed ethylene evolution from germinating seeds up to 30% under stress of 60 mM NaCl due to elevated levels of TSS and SOD activity. Foliar application of SA upgraded SOD by lowering POD activity to improve NUE particularly K use efficiency at salinity stress of 60 mM NaCl. Application of 0.2 and 0.3 mM SA emerged as the most effective concentrations of SA for mitigating 60 mM NaCl stress on different physiological and morphological characteristics of sweet pepper.

]]>