ResearchPad - algorithms https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[TURBOMOLE: Modular program suite for <i>ab initio</i> quantum-chemical and condensed-matter simulations]]> https://www.researchpad.co/article/elastic_article_13895 TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy–cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe–Salpeter methods, second-order Møller–Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE’s functionality, including excited-state methods, RPA and Green’s function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE’s current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE’s development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.

]]>
<![CDATA[The two types of society: Computationally revealing recurrent social formations and their evolutionary trajectories]]> https://www.researchpad.co/article/elastic_article_13873 Comparative social science has a long history of attempts to classify societies and cultures in terms of shared characteristics. However, only recently has it become feasible to conduct quantitative analysis of large historical datasets to mathematically approach the study of social complexity and classify shared societal characteristics. Such methods have the potential to identify recurrent social formations in human societies and contribute to social evolutionary theory. However, in order to achieve this potential, repeated studies are needed to assess the robustness of results to changing methods and data sets. Using an improved derivative of the Seshat: Global History Databank, we perform a clustering analysis of 271 past societies from sampling points across the globe to study plausible categorizations inherent in the data. Analysis indicates that the best fit to Seshat data is five subclusters existing as part of two clearly delineated superclusters (that is, two broad “types” of society in terms of social-ecological configuration). Our results add weight to the idea that human societies form recurrent social formations by replicating previous studies with different methods and data. Our results also contribute nuance to previously established measures of social complexity, illustrate diverse trajectories of change, and shed further light on the finite bounds of human social diversity.

]]>
<![CDATA[Scedar: A scalable Python package for single-cell RNA-seq exploratory data analysis]]> https://www.researchpad.co/article/elastic_article_13837 In single-cell RNA-seq (scRNA-seq) experiments, the number of individual cells has increased exponentially, and the sequencing depth of each cell has decreased significantly. As a result, analyzing scRNA-seq data requires extensive considerations of program efficiency and method selection. In order to reduce the complexity of scRNA-seq data analysis, we present scedar, a scalable Python package for scRNA-seq exploratory data analysis. The package provides a convenient and reliable interface for performing visualization, imputation of gene dropouts, detection of rare transcriptomic profiles, and clustering on large-scale scRNA-seq datasets. The analytical methods are efficient, and they also do not assume that the data follow certain statistical distributions. The package is extensible and modular, which would facilitate the further development of functionalities for future requirements with the open-source development community. The scedar package is distributed under the terms of the MIT license at https://pypi.org/project/scedar.

]]>
<![CDATA[Mesh smoothing algorithm based on exterior angles split]]> https://www.researchpad.co/article/elastic_article_13823 Since meshes of poor quality give rise to low accuracy in finite element analysis and kinds of inconveniences in many other applications, mesh smoothing is widely used as an essential technique for the improvement of mesh quality. With respect to this issue, the main contribution of this paper is that a novel mesh smoothing method based on an exterior-angle-split process is proposed. The proposed method contains three main stages: the first stage is independent element geometric transformation performed by exterior-angle-split operations, treating elements unconnected; the second stage is to offset scaling and displacement induced by element transformation; the third stage is to determine the final positions of nodes with a weighted strategy. Theoretical proof describes the regularity of this method and many numerical experiments illustrate its convergence. Not only is this method applicable for triangular mesh, but also can be naturally extended to arbitrary polygonal surface mesh. Quality improvements of demonstrations on triangular and quadrilateral meshes show the effectiveness of this method.

]]>
<![CDATA[A model for the assessment of bluetongue virus serotype 1 persistence in Spain]]> https://www.researchpad.co/article/elastic_article_11225 Bluetongue virus (BTV) is an arbovirus of ruminants that has been circulating in Europe continuously for more than two decades and has become endemic in some countries such as Spain. Spain is ideal for BTV epidemiological studies since BTV outbreaks from different sources and serotypes have occurred continuously there since 2000; BTV-1 has been reported there from 2007 to 2017. Here we develop a model for BTV-1 endemic scenario to estimate the risk of an area becoming endemic, as well as to identify the most influential factors for BTV-1 persistence. We created abundance maps at 1-km2 spatial resolution for the main vectors in Spain, Culicoides imicola and Obsoletus and Pulicaris complexes, by combining environmental satellite data with occurrence models and a random forest machine learning algorithm. The endemic model included vector abundance and host-related variables (farm density). The three most relevant variables in the endemic model were the abundance of C. imicola and Obsoletus complex and density of goat farms (AUC 0.86); this model suggests that BTV-1 is more likely to become endemic in central and southwestern regions of Spain. It only requires host- and vector-related variables to identify areas at greater risk of becoming endemic for bluetongue. Our results highlight the importance of suitable Culicoides spp. prediction maps for bluetongue epidemiological studies and decision-making about control and eradication measures.

]]>
<![CDATA[Genetic algorithm-based personalized models of human cardiac action potential]]> https://www.researchpad.co/article/elastic_article_7669 We present a novel modification of genetic algorithm (GA) which determines personalized parameters of cardiomyocyte electrophysiology model based on set of experimental human action potential (AP) recorded at different heart rates. In order to find the steady state solution, the optimized algorithm performs simultaneous search in the parametric and slow variables spaces. We demonstrate that several GA modifications are required for effective convergence. Firstly, we used Cauchy mutation along a random direction in the parametric space. Secondly, relatively large number of elite organisms (6–10% of the population passed on to new generation) was required for effective convergence. Test runs with synthetic AP as input data indicate that algorithm error is low for high amplitude ionic currents (1.6±1.6% for IKr, 3.2±3.5% for IK1, 3.9±3.5% for INa, 8.2±6.3% for ICaL). Experimental signal-to-noise ratio above 28 dB was required for high quality GA performance. GA was validated against optical mapping recordings of human ventricular AP and mRNA expression profile of donor hearts. In particular, GA output parameters were rescaled proportionally to mRNA levels ratio between patients. We have demonstrated that mRNA-based models predict the AP waveform dependence on heart rate with high precision. The latter also provides a novel technique of model personalization that makes it possible to map gene expression profile to cardiac function.

]]>
<![CDATA[Predicting 30-day hospital readmissions using artificial neural networks with medical code embedding]]> https://www.researchpad.co/article/N1f40719a-4631-45e6-bedb-5cf8a42ecf53

Reducing unplanned readmissions is a major focus of current hospital quality efforts. In order to avoid unfair penalization, administrators and policymakers use prediction models to adjust for the performance of hospitals from healthcare claims data. Regression-based models are a commonly utilized method for such risk-standardization across hospitals; however, these models often suffer in accuracy. In this study we, compare four prediction models for unplanned patient readmission for patients hospitalized with acute myocardial infarction (AMI), congestive health failure (HF), and pneumonia (PNA) within the Nationwide Readmissions Database in 2014. We evaluated hierarchical logistic regression and compared its performance with gradient boosting and two models that utilize artificial neural networks. We show that unsupervised Global Vector for Word Representations embedding representations of administrative claims data combined with artificial neural network classification models improves prediction of 30-day readmission. Our best models increased the AUC for prediction of 30-day readmissions from 0.68 to 0.72 for AMI, 0.60 to 0.64 for HF, and 0.63 to 0.68 for PNA compared to hierarchical logistic regression. Furthermore, risk-standardized hospital readmission rates calculated from our artificial neural network model that employed embeddings led to reclassification of approximately 10% of hospitals across categories of hospital performance. This finding suggests that prediction models that incorporate new methods classify hospitals differently than traditional regression-based approaches and that their role in assessing hospital performance warrants further investigation.

]]>
<![CDATA[LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data]]> https://www.researchpad.co/article/Na533cb35-b26a-447b-bd62-8e125a165db4

Intensive care data are valuable for improvement of health care, policy making and many other purposes. Vast amount of such data are stored in different locations, on many different devices and in different data silos. Sharing data among different sources is a big challenge due to regulatory, operational and security reasons. One potential solution is federated machine learning, which is a method that sends machine learning algorithms simultaneously to all data sources, trains models in each source and aggregates the learned models. This strategy allows utilization of valuable data without moving them. One challenge in applying federated machine learning is the possibly different distributions of data from diverse sources. To tackle this problem, we proposed an adaptive boosting method named LoAdaBoost that increases the efficiency of federated machine learning. Using intensive care unit data from hospitals, we investigated the performance of learning in IID and non-IID data distribution scenarios, and showed that the proposed LoAdaBoost method achieved higher predictive accuracy with lower computational complexity than the baseline method.

]]>
<![CDATA[Exact flow of particles using for state estimations in unmanned aerial systems` navigation]]> https://www.researchpad.co/article/Nb8d1b185-24ca-4749-9cc9-bbc7ade34d0a

The navigation is a substantial issue in the field of robotics. Simultaneous Localization and Mapping (SLAM) is a principle for many autonomous navigation applications, particularly in the Global Navigation Satellite System (GNSS) denied environments. Many SLAM methods made substantial contributions to improve its accuracy, cost, and efficiency. Still, it is a considerable challenge to manage robust SLAM, and there exist several attempts to find better estimation algorithms for it. In this research, we proposed a novel Bayesian filtering based Airborne SLAM structure for the first time in the literature. We also presented the mathematical background of the algorithm, and the SLAM model of an autonomous aerial vehicle. Simulation results emphasize that the new Airborne SLAM performance with the exact flow of particles using for recursive state estimations superior to other approaches emerged before, in terms of accuracy and speed of convergence. Nevertheless, its computational complexity may cause real-time application concerns, particularly in high-dimensional state spaces. However, in Airborne SLAM, it can be preferred in the measurement environments that use low uncertainty sensors because it gives more successful results by eliminating the problem of degeneration seen in the particle filter structure.

]]>
<![CDATA[Contemporary hemodynamic monitoring, fluid responsiveness, volume optimization, and endpoints of resuscitation: an AAST critical care committee clinical consensus]]> https://www.researchpad.co/article/N9e816129-7ad8-4e10-9034-968050f4036f

This article, on hemodynamic monitoring, fluid responsiveness, volume assessment, and endpoints of resuscitation, is part of a compendium of guidelines provided by the AAST (American Association for the Surgery of Trauma) critical care committee. The intention of these guidelines is to inform practitioners with practical clinical guidance. To do this effectively and contemporarily, expert consensus via the critical care committee was obtained. Strict guideline methodology such a GRADE (Grading of Recommendations Assessment, Development and Evaluation) was purposefully NOT used so as not to limit the possible clinical guidance. The critical care committee foresees this methodology as practically valuable to the bedside clinician.

]]>
<![CDATA[Is it time to stop sweeping data cleaning under the carpet? A novel algorithm for outlier management in growth data]]> https://www.researchpad.co/article/N6ac4201b-e1d9-4dac-b706-1c6b88e127a6

All data are prone to error and require data cleaning prior to analysis. An important example is longitudinal growth data, for which there are no universally agreed standard methods for identifying and removing implausible values and many existing methods have limitations that restrict their usage across different domains. A decision-making algorithm that modified or deleted growth measurements based on a combination of pre-defined cut-offs and logic rules was designed. Five data cleaning methods for growth were tested with and without the addition of the algorithm and applied to five different longitudinal growth datasets: four uncleaned canine weight or height datasets and one pre-cleaned human weight dataset with randomly simulated errors. Prior to the addition of the algorithm, data cleaning based on non-linear mixed effects models was the most effective in all datasets and had on average a minimum of 26.00% higher sensitivity and 0.12% higher specificity than other methods. Data cleaning methods using the algorithm had improved data preservation and were capable of correcting simulated errors according to the gold standard; returning a value to its original state prior to error simulation. The algorithm improved the performance of all data cleaning methods and increased the average sensitivity and specificity of the non-linear mixed effects model method by 7.68% and 0.42% respectively. Using non-linear mixed effects models combined with the algorithm to clean data allows individual growth trajectories to vary from the population by using repeated longitudinal measurements, identifies consecutive errors or those within the first data entry, avoids the requirement for a minimum number of data entries, preserves data where possible by correcting errors rather than deleting them and removes duplications intelligently. This algorithm is broadly applicable to data cleaning anthropometric data in different mammalian species and could be adapted for use in a range of other domains.

]]>
<![CDATA[Lean back and wait for the alarm? Testing an automated alarm system for nosocomial outbreaks to provide support for infection control professionals]]> https://www.researchpad.co/article/N4571fdc0-2a2e-4467-acc9-eeadc2652757

Introduction

Outbreaks of communicable diseases in hospitals need to be quickly detected in order to enable immediate control. The increasing digitalization of hospital data processing offers potential solutions for automated outbreak detection systems (AODS). Our goal was to assess a newly developed AODS.

Methods

Our AODS was based on the diagnostic results of routine clinical microbiological examinations. The system prospectively counted detections per bacterial pathogen over time for the years 2016 and 2017. The baseline data covers data from 2013–2015. The comparative analysis was based on six different mathematical algorithms (normal/Poisson and score prediction intervals, the early aberration reporting system, negative binomial CUSUMs, and the Farrington algorithm). The clusters automatically detected were then compared with the results of our manual outbreak detection system.

Results

During the analysis period, 14 different hospital outbreaks were detected as a result of conventional manual outbreak detection. Based on the pathogens’ overall incidence, outbreaks were divided into two categories: outbreaks with rarely detected pathogens (sporadic) and outbreaks with often detected pathogens (endemic). For outbreaks with sporadic pathogens, the detection rate of our AODS ranged from 83% to 100%. Every algorithm detected 6 of 7 outbreaks with a sporadic pathogen. The AODS identified outbreaks with an endemic pathogen were at a detection rate of 33% to 100%. For endemic pathogens, the results varied based on the epidemiological characteristics of each outbreak and pathogen.

Conclusion

AODS for hospitals based on routine microbiological data is feasible and can provide relevant benefits for infection control teams. It offers in-time automated notification of suspected pathogen clusters especially for sporadically occurring pathogens. However, outbreaks of endemically detected pathogens need further individual pathogen-specific and setting-specific adjustments.

]]>
<![CDATA[A graph-based algorithm for RNA-seq data normalization]]> https://www.researchpad.co/article/N0b813aa9-b155-4778-93ba-b0f37d26ae8a

The use of RNA-sequencing has garnered much attention in recent years for characterizing and understanding various biological systems. However, it remains a major challenge to gain insights from a large number of RNA-seq experiments collectively, due to the normalization problem. Normalization has been challenging due to an inherent circularity, requiring that RNA-seq data be normalized before any pattern of differential (or non-differential) expression can be ascertained; meanwhile, the prior knowledge of non-differential transcripts is crucial to the normalization process. Some methods have successfully overcome this problem by the assumption that most transcripts are not differentially expressed. However, when RNA-seq profiles become more abundant and heterogeneous, this assumption fails to hold, leading to erroneous normalization. We present a normalization procedure that does not rely on this assumption, nor prior knowledge about the reference transcripts. This algorithm is based on a graph constructed from intrinsic correlations among RNA-seq transcripts and seeks to identify a set of densely connected vertices as references. Application of this algorithm on our synthesized validation data showed that it could recover the reference transcripts with high precision, thus resulting in high-quality normalization. On a realistic data set from the ENCODE project, this algorithm gave good results and could finish in a reasonable time. These preliminary results imply that we may be able to break the long persisting circularity problem in RNA-seq normalization.

]]>
<![CDATA[pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage]]> https://www.researchpad.co/article/N0686bd46-1746-4f66-8610-270f1b75b482

Transparent research in musculoskeletal imaging is fundamental to reliably investigate diseases such as knee osteoarthritis (OA), a chronic disease impairing femoral knee cartilage. To study cartilage degeneration, researchers have developed algorithms to segment femoral knee cartilage from magnetic resonance (MR) images and to measure cartilage morphology and relaxometry. The majority of these algorithms are not publicly available or require advanced programming skills to be compiled and run. However, to accelerate discoveries and findings, it is crucial to have open and reproducible workflows. We present pyKNEEr, a framework for open and reproducible research on femoral knee cartilage from MR images. pyKNEEr is written in python, uses Jupyter notebook as a user interface, and is available on GitHub with a GNU GPLv3 license. It is composed of three modules: 1) image preprocessing to standardize spatial and intensity characteristics; 2) femoral knee cartilage segmentation for intersubject, multimodal, and longitudinal acquisitions; and 3) analysis of cartilage morphology and relaxometry. Each module contains one or more Jupyter notebooks with narrative, code, visualizations, and dependencies to reproduce computational environments. pyKNEEr facilitates transparent image-based research of femoral knee cartilage because of its ease of installation and use, and its versatility for publication and sharing among researchers. Finally, due to its modular structure, pyKNEEr favors code extension and algorithm comparison. We tested our reproducible workflows with experiments that also constitute an example of transparent research with pyKNEEr, and we compared pyKNEEr performances to existing algorithms in literature review visualizations. We provide links to executed notebooks and executable environments for immediate reproducibility of our findings.

]]>
<![CDATA[Exponential random graph model parameter estimation for very large directed networks]]> https://www.researchpad.co/article/N437fb42a-ebf8-44aa-9399-d12b1354408e

Exponential random graph models (ERGMs) are widely used for modeling social networks observed at one point in time. However the computational difficulty of ERGM parameter estimation has limited the practical application of this class of models to relatively small networks, up to a few thousand nodes at most, with usually only a few hundred nodes or fewer. In the case of undirected networks, snowball sampling can be used to find ERGM parameter estimates of larger networks via network samples, and recently published improvements in ERGM network distribution sampling and ERGM estimation algorithms have allowed ERGM parameter estimates of undirected networks with over one hundred thousand nodes to be made. However the implementations of these algorithms to date have been limited in their scalability, and also restricted to undirected networks. Here we describe an implementation of the recently published Equilibrium Expectation (EE) algorithm for ERGM parameter estimation of large directed networks. We test it on some simulated networks, and demonstrate its application to an online social network with over 1.6 million nodes.

]]>
<![CDATA[Disease-relevant mutations alter amino acid co-evolution networks in the second nucleotide binding domain of CFTR]]> https://www.researchpad.co/article/N211c75a7-eaac-4644-b655-cac4e239c2e4

Cystic Fibrosis (CF) is an inherited disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Mutations in CFTR cause impaired chloride ion transport in the epithelial tissues of patients leading to cardiopulmonary decline and pancreatic insufficiency in the most severely affected patients. CFTR is composed of twelve membrane-spanning domains, two nucleotide-binding domains (NBDs), and a regulatory domain. The most common mutation in CFTR is a deletion of phenylalanine at position 508 (ΔF508) in NBD1. Previous research has primarily concentrated on the structure and dynamics of the NBD1 domain; However numerous pathological mutations have also been found in the lesser-studied NBD2 domain. We have investigated the amino acid co-evolved network of interactions in NBD2, and the changes that occur in that network upon the introduction of CF and CF-related mutations (S1251N(T), S1235R, D1270N, N1303K(T)). Extensive coupling between the α- and β-subdomains were identified with residues in, or near Walker A, Walker B, H-loop and C-loop motifs. Alterations in the predicted residue network varied from moderate for the S1251T perturbation to more severe for N1303T. The S1235R and D1270N networks varied greatly compared to the wildtype, but these CF mutations only affect ion transport preference and do not severely disrupt CFTR function, suggesting dynamic flexibility in the network of interactions in NBD2. Our results also suggest that inappropriate interactions between the β-subdomain and Q-loop could be detrimental. We also identified mutations predicted to stabilize the NBD2 residue network upon introduction of the CF and CF-related mutations, and these predicted mutations are scored as benign by the MUTPRED2 algorithm. Our results suggest the level of disruption of the co-evolution predictions of the amino acid networks in NBD2 does not have a straightforward correlation with the severity of the CF phenotypes observed.

]]>
<![CDATA[New physiological bench test reproducing nocturnal breathing pattern of patients with sleep disordered breathing]]> https://www.researchpad.co/article/N13bd4ad3-60c6-4376-997d-f10f1c975c0e

Previous studies have shown that Automatic Positive Airway Pressure devices display different behaviors when connected to a bench using theoretical respiratory cycle scripts. However, these scripts are limited and do not simulate physiological behavior during the night. Our aim was to develop a physiological bench that is able to simulate patient breathing airflow by integrating polygraph data. We developed an algorithm analyzing polygraph data and transformed this information into digital inputs required by the bench hardware to reproduce a patient breathing profile on bench. The inputs are respectively the simulated respiratory muscular effort pressure input for an artificial lung and the sealed chamber pressure to regulate the Starling resistor. We did simulations on our bench for a total of 8 hours and 59 minutes for a breathing profile from the demonstration recording of a Nox T3 Sleep Monitor. The simulation performance results showed that in terms of relative peak-valley amplitude of each breathing cycle, simulated bench airflow was biased by only 1.48% ± 6.80% compared to estimated polygraph nasal airflow for a total of 6,479 breathing cycles. For total respiratory cycle time, the average bias ± one standard deviation was 0.000 ± 0.288 seconds. For patient apnea events, our bench simulation had a sensitivity of 84.7% and a positive predictive value equal to 90.3%, considering 149 apneas detected both in polygraph nasal simulated bench airflows. Our new physiological bench would allow personalizing APAP device selection to each patient by taking into account individual characteristics of a sleep breathing profile.

]]>
<![CDATA[Algorithmic bias amplifies opinion fragmentation and polarization: A bounded confidence model]]> https://www.researchpad.co/article/5c8823d7d5eed0c484639133

The flow of information reaching us via the online media platforms is optimized not by the information content or relevance but by popularity and proximity to the target. This is typically performed in order to maximise platform usage. As a side effect, this introduces an algorithmic bias that is believed to enhance fragmentation and polarization of the societal debate. To study this phenomenon, we modify the well-known continuous opinion dynamics model of bounded confidence in order to account for the algorithmic bias and investigate its consequences. In the simplest version of the original model the pairs of discussion participants are chosen at random and their opinions get closer to each other if they are within a fixed tolerance level. We modify the selection rule of the discussion partners: there is an enhanced probability to choose individuals whose opinions are already close to each other, thus mimicking the behavior of online media which suggest interaction with similar peers. As a result we observe: a) an increased tendency towards opinion fragmentation, which emerges also in conditions where the original model would predict consensus, b) increased polarisation of opinions and c) a dramatic slowing down of the speed at which the convergence at the asymptotic state is reached, which makes the system highly unstable. Fragmentation and polarization are augmented by a fragmented initial population.

]]>
<![CDATA[Modified shape index for object-based random forest image classification of agricultural systems using airborne hyperspectral datasets]]> https://www.researchpad.co/article/5c8acce5d5eed0c484990263

This paper highlights the importance of optimized shape index for agricultural management system analysis that utilizes the contiguous bands of hyperspectral data to define the gradient of the spectral curve and improve image classification accuracy. Currently, a number of machine learning methods would resort to using averaged spectral information over wide bandwidths resulting in loss of crucial information available in those contiguous bands. The loss of information could mean a drop in the discriminative power when it comes to land cover classes with comparable spectral responses, as in the case of cultivated fields versus fallow lands. In this study, we proposed and tested three new optimized novel algorithms based on Moment Distance Index (MDI) that characterizes the whole shape of the spectral curve. The image classification tests conducted on two publicly available hyperspectral data sets (AVIRIS 1992 Indian Pine and HYDICE Washington DC Mall images) showed the robustness of the optimized algorithms in terms of classification accuracy. We achieved an overall accuracy of 98% and 99% for AVIRIS and HYDICE, respectively. The optimized indices were also time efficient as it avoided the process of band dimension reduction, such as those implemented by several well-known classifiers. Our results showed the potential of optimized shape indices, specifically the Moment Distance Ratio Right/Left (MDRRL), to discriminate between types of tillage (corn-min and corn-notill) and between grass/pasture and grass/trees, tree and grass under object-based random forest approach.

]]>
<![CDATA[A deadline constrained scheduling algorithm for cloud computing system based on the driver of dynamic essential path]]> https://www.researchpad.co/article/5c8c195bd5eed0c484b4d4af

To solve the problem of the deadline-constrained task scheduling in the cloud computing system, this paper proposes a deadline-constrained scheduling algorithm for cloud computing based on the driver of dynamic essential path (Deadline-DDEP). According to the changes of the dynamic essential path of each task node in the scheduling process, the dynamic sub-deadline strategy is proposed. The strategy assigns different sub-deadline values to every task node to meet the constraint relations among task nodes and the user’s defined deadline. The strategy fully considers the dynamic sub-deadline affected by the dynamic essential path of task node in the scheduling process. The paper proposed the quality assessment of optimization cost strategy to solve the problem of selecting server for each task node. Based on the sub-deadline urgency and the relative execution cost in the scheduling process, the strategy selects the server that not only meets the sub-deadline but also obtains much lower execution cost. In this way, the proposed algorithm will make the task graph complete within its deadline, and minimize its total execution cost. Finally, we demonstrate the proposed algorithm via the simulation experiments using Matlab tools. The experimental results show that, the proposed algorithm produces remarkable performance improvement rate on the total execution cost that ranges between 10.3% and 30.8% under meeting the deadline constraint. In view of the experimental results, the proposed algorithm provides better-quality scheduling solution that is suitable for scientific application task execution in the cloud computing environment than IC-PCP, DCCP and CD-PCP.

]]>