ResearchPad - alkaloids https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Retention of patients in opioid substitution treatment: A systematic review]]> https://www.researchpad.co/article/elastic_article_14597 Retention in opioid substitution (OST) treatment is associated with substantial reductions in all cause and overdose mortality. This systematic review aims to identify both protective factors supporting retention in OST, and risk factors for treatment dropout.MethodsA systematic search was performed using MEDLINE, Embase, PsycInfo, CINAHL and Web of Science (January 2001 to October 2019). Randomised controlled trials (RCTs) and observational cohort studies reporting on retention rates and factors associated with retention in OST were included. Factors associated with treatment retention and dropout were explored according to the Maudsley Addiction Profile. A narrative synthesis is provided.Results67 studies were included in this review (4 RCTs and 63 observational cohort studies; N = 294,592), all assessing factors associated with retention in OST or treatment dropout. The median retention rate across observational studies was approximately 57% at 12 months, which fell to 38.4% at three years. Studies included were heterogeneous in nature with respect to treatment setting, type of OST, risk factor assessment, ascertainment of outcome and duration of follow-up. While the presence of such methodological heterogeneity makes it difficult to synthesise results, there is limited evidence to support the influence of a number of factors on retention, including age, substance use, OST drug dose, legal issues, and attitudes to OST.ConclusionsYounger age, substance use particularly cocaine and heroin use, lower doses of methadone, criminal activity/incarceration, and negative attitudes to MMT appear to be associated with reduced retention in OST. A consensus definition of retention is required to allow for comparability across future studies. ]]> <![CDATA[Aging-associated sinus arrest and sick sinus syndrome in adult zebrafish]]> https://www.researchpad.co/article/elastic_article_13853 Because of its powerful genetics, the adult zebrafish has been increasingly used for studying cardiovascular diseases. Considering its heart rate of ~100 beats per minute at ambient temperature, which is very close to human, we assessed the use of this vertebrate animal for modeling heart rhythm disorders such as sinus arrest (SA) and sick sinus syndrome (SSS). We firstly optimized a protocol to measure electrocardiogram in adult zebrafish. We determined the location of the probes, implemented an open-chest microsurgery procedure, measured the effects of temperature, and determined appropriate anesthesia dose and time. We then proposed an PP interval of more than 1.5 seconds as an arbitrary criterion to define an SA episode in an adult fish at ambient temperature, based on comparison between the current definition of an SA episode in humans and our studies of candidate SA episodes in aged wild-type fish and Tg(SCN5A-D1275N) fish (a fish model for inherited SSS). With this criterion, a subpopulation of about 5% wild-type fish can be considered to have SA episodes, and this percentage significantly increases to about 25% in 3-year-old fish. In response to atropine, this subpopulation has both common SSS phenotypic traits that are shared with the Tg(SCN5A-D1275N) model, such as bradycardia; and unique SSS phenotypic traits, such as increased QRS/P ratio and chronotropic incompetence. In summary, this study defined baseline SA and SSS in adult zebrafish and underscored use of the zebrafish as an alternative model to study aging-associated SSS.

]]>
<![CDATA[Rapid and sensitive detection of NADPH via mBFP-mediated enhancement of its fluorescence]]> https://www.researchpad.co/article/5c6b2618d5eed0c4842892e3

The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) functions as a reducing agent involved in many biosynthetic and antioxidant reactions in cells. Therefore, a lots of detection or assaying method of this cofactor are developed and used broadly in various research and application fields. These detection or assay tools, however, have often some problems, such as the low sensitivity, susceptibility to environmental interference and time-consuming pretreatment steps, remaining hurdle to successful quantification of NADPH or its derivatives accurately and immediately. Herein, we present a rapid (assay time < 30 s) and sensitive (detection limit < 2 pmol) detection method of NADPH using metagenome-derived blue fluorescent protein (mBFP), a protein capable of significantly enhancing NADPH fluorescence upon binding to this cofactor. Our method takes advantage of the high specificity of mBFP to NADPH and the immediate fluorescence enhancement upon the addition of mBFP to a solution of interest containing NADPH. We can apply this detection scheme to directly quantitative assessment of NADP(H)-dependent enzyme activities in-vitro, and further accessed to quantitative assay of other nicotine amide cofactors, such as NAD+ and NADH, by coupling assay using NAD(H) kinase. Thus, our method enabled us to quantitatively assess the activity of nicotinamide cofactor-associated enzymes in both bacterial and human cell lysates.

]]>
<![CDATA[Dissection of the regulatory role for the N-terminal domain in Candida albicans protein phosphatase Z1]]> https://www.researchpad.co/article/5c5df31ad5eed0c484580d1d

The novel type, fungus specific protein phosphatase Z1 of the opportunistic pathogen, Candida albicans (CaPpz1) has several important physiological roles. It consists of a conserved C-terminal catalytic domain and a variable, intrinsically disordered, N-terminal regulatory domain. To test the function of these domains we modified the structure of CaPpz1 by in vitro mutagenesis. The two main domains were separated, four potential protein binding regions were deleted, and the myristoylation site as well as the active site of the enzyme was crippled by point mutations G2A and R262L, respectively. The in vitro phosphatase activity assay of the bacterially expressed recombinant proteins indicated that the N-terminal domain was inactive, while the C-terminal domain became highly active against myosin light chain substrate. The deletion of the N-terminal 1–16 amino acids and the G2A mutation significantly decreased the specific activity of the enzyme. Complementation of the ppz1 Saccharomyces cerevisiae deletion mutant strain with the different CaPpz1 forms demonstrated that the scission of the main domains, the two point mutations and the N-terminal 1–16 deletion rendered the phosphatase incompetent in the in vivo assays of LiCl tolerance and caffeine sensitivity. Thus our results confirmed the functional role of the N-terminal domain and highlighted the significance of the very N-terminal part of the protein in the regulation of CaPpz1.

]]>
<![CDATA[Time course of tolerance to the performance benefits of caffeine]]> https://www.researchpad.co/article/5c521817d5eed0c4847972ee

The ergogenic effect of acute caffeine ingestion has been widely investigated; however, scientific information regarding tolerance to the performance benefits of caffeine, when ingested on a day-to-day basis, is scarce. The aim of this investigation was to determine the time course of tolerance to the ergogenic effects of a moderate dose of caffeine. Eleven healthy active participants took part in a cross-over, double-blind, placebo-controlled experiment. In one treatment, they ingested 3 mg/kg/day of caffeine for 20 consecutive days while in another they ingested a placebo for 20 days. Each substance was administered daily in an opaque unidentifiable capsule, and the experimental trials started 45 min after capsule ingestion. Two days before, and three times per week during each 20-day treatment, aerobic peak power was measured with an incremental test to volitional fatigue (25 W/min) and aerobic peak power was measured with an adapted version of the Wingate test (15 s). In comparison to the placebo, the ingestion of caffeine increased peak cycling power in the incremental exercise test by ~4.0 ±1.3% for the first 15 days (P<0.05) but then this ergogenic effect lessened. Caffeine also increased peak cycling power during the Wingate test on days 1, 4, 15, and 18 of ingestion by ~4.9 ±0.9% (P<0.05). In both tests, the magnitude of the ergogenic effect of caffeine vs. placebo was higher on the first day of ingestion and then progressively decreased. These results show a continued ergogenic effect with the daily ingestion of caffeine for 15–18 days; however, the changes in the magnitude of this effect suggest progressive tolerance.

]]>
<![CDATA[Immediate risk of myocardial infarction following physical exertion, tea, and coffee: A case-crossover study in Thailand]]> https://www.researchpad.co/article/5c605a51d5eed0c4847ccdc6

Background

Physical exertion and caffeine consumption are associated with acute myocardial infarction (MI). However, physical exertion and caffeine consumption have not been examined as immediate triggers of MI in low and middle-income countries.

Objective

Using a self-matched case-crossover design, we examined the acute risk of MI in the hour following episodes of physical exertion, caffeinated coffee, and tea consumption among MI survivors in Thailand.

Methods

A total of 506 Thai participants (women = 191, men = 315) were interviewed between 2014 and 2017 after sustaining an acute MI. We compared each subject’s exposure to physical exertion and consumption of caffeine- containing beverages in the hour preceding the onset of MI with the subject’s expected usual frequency in the prior year to calculate relative risks (RRs) and 95% confidence intervals (95%CIs).

Results

Of the 506 participants, 47 (9.3%) engaged in moderate or heavy physical exertion, 6 (1.2%) consumed tea, and 21 (4.2%) consumed coffee within the hour before MI. The relative risk of MI after moderate or heavy physical exertion was 3.0 (95% CI 2.2–4.2) compared to periods of no exertion, with a higher risk among more sedentary participants compared to active participants. Compared to times with no caffeinated beverage consumption, there was a higher risk of MI in the hour following consumption of caffeinated tea (RR = 3.7; 95%CI: 1.5–9.3) and coffee (RR = 2.3; 95%CI: 1.4–3.6).

Conclusion

Physical exertion, coffee and tea consumption were associated with a higher risk of MI in the subsequent hour compared to times when the participants were sedentary or did not consume caffeinated beverages. Our study identifies high-risk populations for targeted screening and intervention to prevent acute MI.

]]>
<![CDATA[Measures of possible allostatic load in comorbid cocaine and alcohol use disorder: Brain white matter integrity, telomere length, and anti-saccade performance]]> https://www.researchpad.co/article/5c3fa5b9d5eed0c484ca7cd8

Chronic cocaine and alcohol use impart significant stress on biological and cognitive systems, resulting in changes consistent with an allostatic load model of neurocognitive impairment.

The present study measured potential markers of allostatic load in individuals with comorbid cocaine/alcohol use disorders (CUD/AUD) and control subjects. Measures of brain white matter (WM), telomere length, and impulsivity/attentional bias were obtained. WM (CUD/AUD only) was indexed by diffusion tensor imaging metrics, including radial diffusivity (RD) and fractional anisotropy (FA). Telomere length was indexed by the telomere to single copy gene (T/S) ratio. Impulsivity and attentional bias to drug cues were measured via eye-tracking, and were also modeled using the Hierarchical Diffusion Drift Model (HDDM). Average whole-brain RD and FA were associated with years of cocaine use (R2 = 0.56 and 0.51, both p < .005) but not years of alcohol use. CUD/AUD subjects showed more anti-saccade errors (p < .01), greater attentional bias scores (p < .001), and higher HDDM drift rates on cocaine-cue trials (Bayesian probability CUD/AUD > control = p > 0.99). Telomere length was shorter in CUD/AUD, but the difference was not statistically significant. Within the CUD/AUD group, exploratory regression using an elastic-net model determined that more years of cocaine use, older age, larger HDDM drift rate differences and shorter telomere length were all predictive of WM as measured by RD (model R2 = 0.79). Collectively, the results provide modest support linking CUD/AUD to putative markers of allostatic load.

]]>
<![CDATA[Attentional and working memory performance following alcohol and energy drink: A randomised, double-blind, placebo-controlled, factorial design laboratory study]]> https://www.researchpad.co/article/5c3fa5c9d5eed0c484ca8872

Alcohol mixed with energy drinks (AMED) studies have typically not shown antagonism of acute alcohol effects by energy drink (ED), particularly over relatively short time frames. This study investigated the effects of alcohol, ED, and AMED on attentional and working memory processes over a 3 h period. Twenty-four young adults took part in a randomised, double-blind, placebo-controlled, factorial, 4-arm study. They were administered 0.6g/kg alcohol and 250 ml ED (containing 80 mg caffeine), and matching placebos alone and in combination. A battery of attentional and working memory measures was completed at baseline then 45, 90 and 180 min post-treatment. Alcohol produced a characteristic shift in speed/accuracy trade-off, having little effect on reaction times while increasing errors on all attentional measures (4-choice Reaction Time, Number Pairs and Visual Search), as well as a composite Attentional error score and one working memory task (Serial Sevens). ED alone improved two working memory measures (Memory Scanning accuracy and Digit–Symbol reaction times) and improved speed of responding on a composite Working Memory score. There was no consistent pattern of AMED vs. alcohol effects; AMED produced more errors than alcohol alone on one attentional measure (Visual Search errors) at 45 min only whereas AMED resulted in fewer errors on the Serial Sevens task at 90 min and better Digit-Symbol accuracy and reaction time at 45 min. Alcohol consumption increases error rate across several attentional and working memory processes. Mutual antagonism between alcohol and ED showed no consistent pattern and likely reflects a complex interaction between caffeine and alcohol levels, phase of the blood alcohol limb, task domain and cognitive load.

]]>
<![CDATA[A test of positive suggestions about side effects as a way of enhancing the analgesic response to NSAIDs]]> https://www.researchpad.co/article/5c37b79dd5eed0c48449066e

Side effects are frequent in pharmacological pain management, potentially preceding analgesia and limiting drug tolerability. Discussing side effects is part of informed consent, yet can favor nocebo effects. This study aimed to test whether a positive suggestion regarding side effects, which could act as reminders of the medication having been absorbed, might favor analgesia in a clinical interaction model. Sixty-six healthy males participated in a study “to validate pupillometry as an objective measure of analgesia”. Participants were unknowingly randomized double-blind to positive vs control information about side effects embedded in a video regarding the study drugs. Sequences of moderately painful heat stimuli applied before and after treatment with diclofenac and atropine served to evaluate analgesia. Atropine was deceptively presented as a co-analgesic, but used to induce side effects. Adverse events (AE) were collected with the General Assessment of Side Effects (GASE) questionnaire prior to the second induced pain sequence. Debriefing fully informed participants regarding the purpose of the study and showed them the two videos.The combination of medication led to significant analgesia, without a between-group difference. Positive information about side effects increased the attribution of AE to the treatment compared to the control information. The total GASE score was correlated with analgesia, i.e., the more AEs reported, the stronger the analgesia. Interestingly, there was a significant between-groups difference on this correlation: the GASE score and analgesia correlated only in the positive information group. This provides evidence for a selective link between AEs and pain relief in the group who received the suggestion that AEs could be taken as a sign “that help was on the way”. During debriefing, 65% of participants said they would prefer to receive the positive message in a clinical context. Although the present results cannot be translated immediately to clinical pain conditions, they do indicate the importance of testing this type of modulation in a clinical context.

]]>
<![CDATA[HIV-1 infection among crack cocaine users in a region far from the epicenter of the HIV epidemic in Brazil: Prevalence and molecular characteristics]]> https://www.researchpad.co/article/5b600f8b463d7e3af00e5a90

Brazil has the largest cocaine market in South America, and crack cocaine use is closely associated with HIV-1 infection. This study investigated the prevalence, risk factors, and HIV-1 subtypes, including recombinant forms and mutations associated with drug resistance, among crack cocaine users in Central-West Brazil. We recruited 600 crack cocaine users admitted to a referral hospital in Goiânia for psychiatric disorders. The participants were interviewed; blood samples were collected for anti-HIV-1/2 serological screening. HIV-1 pol gene sequences (entire protease [PR] and partial reverse transcriptase [RT]) were obtained from plasma RNA. HIV-1 subtypes, recombinant viruses, transmitted drug resistance (TDR), and secondary drug resistance mutations were investigated. The median participant age was 30 years (range, 18–68 years); most were male, single, unemployed, and of mixed races. Among them, 2.8% (17/600) were HIV-1 positive: 2.2% of men (11/507) and 6.5% of women (6/93). The main predictors of HIV-1 seropositivity were a sexual partner with HIV infection, irregular condom use, and previous homelessness. HIV-1 pol sequences (12/17) indicated the predominance of subtype B (n = 7), followed by recombinant forms FPR/BRT (n = 1) and BPR/FRT (n = 2) and subtypes F1 (n = 1) and C (n = 1). TDR prevalence was 58.3% (7/12). Isolates from two participants showed mutations associated with resistance to nucleoside reverse transcriptase inhibitors (NRTI) only (M41L, T125C, T125F, M184V), while an isolate from one patient who had received antiretroviral therapy (ART) since 2008 had a mutation associated with resistance to non-NRTI (G190S). Five isolates had secondary mutations to protease inhibitors (K20M, L10V, L33I, A71T, A71V). In conclusion, the findings of HIV-1 circulation, TDR to NRTI, and secondary mutations to protease inhibitors in ART-naïve crack cocaine users support the importance of monitoring this population in regions far from the epicenter of the HIV epidemic.

]]>
<![CDATA[CDKN1B/p27 is localized in mitochondria and improves respiration-dependent processes in the cardiovascular system—New mode of action for caffeine]]> https://www.researchpad.co/article/5b49cacb463d7e33e4eac05d

We show that the cyclin-dependent kinase inhibitor 1B (CDKN1B)/p27, previously known as a cell cycle inhibitor, is also localized within mitochondria. The migratory capacity of endothelial cells, which need intact mitochondria, is completely dependent on mitochondrial p27. Mitochondrial p27 improves mitochondrial membrane potential, increases adenosine triphosphate (ATP) content, and is required for the promigratory effect of caffeine. Domain mapping of p27 revealed that the N-terminus and C-terminus are required for those improvements. Further analysis of those regions revealed that the translocation of p27 into the mitochondria and its promigratory activity depend on serine 10 and threonine 187. In addition, mitochondrial p27 protects cardiomyocytes against apoptosis. Moreover, mitochondrial p27 is necessary and sufficient for cardiac myofibroblast differentiation. In addition, p27 deficiency and aging decrease respiration in heart mitochondria. Caffeine does not increase respiration in p27-deficient animals, whereas aged mice display improvement after 10 days of caffeine in drinking water. Moreover, caffeine induces transcriptome changes in a p27-dependent manner, affecting mostly genes relevant for mitochondrial processes. Caffeine also reduces infarct size after myocardial infarction in prediabetic mice and increases mitochondrial p27. Our data characterize mitochondrial p27 as a common denominator that improves mitochondria-dependent processes and define an increase in mitochondrial p27 as a new mode of action of caffeine.

]]>
<![CDATA[Long-Term Green Tea Supplementation Does Not Change the Human Gut Microbiota]]> https://www.researchpad.co/article/5989d9f1ab0ee8fa60b6e674

Background

Green tea catechins may play a role in body weight regulation through interactions with the gut microbiota.

Aim

We examined whether green tea supplementation for 12 weeks induces changes in composition of the human gut microbiota.

Methods

58 Caucasian men and women were included in a randomized, placebo-controlled design. For 12 weeks, subjects consumed either green tea (>0.56 g/d epigallocatechin-gallate + 0.28 ∼ 0.45 g/d caffeine) or placebo capsules. Fecal samples were collected twice (baseline, vs. week 12) for analyses of total bacterial profiles by means of IS-profiling, a 16S-23S interspacer region-based profiling method.

Results

No significant changes between baseline and week 12 in subjects receiving green tea or placebo capsules, and no significant interactions between treatment (green tea or placebo) and time (baseline and week 12) were observed for body composition. Analysis of the fecal samples in subjects receiving green tea and placebo showed similar bacterial diversity and community structures, indicating there were no significant changes in bacterial diversity between baseline and week 12 in subjects receiving green tea capsules or in subjects receiving placebo capsules. No significant interactions were observed between treatment (green tea or placebo) and time (baseline and week 12) for the gut microbial diversity. Although, there were no significant differences between normal weight and overweight subjects in response to green tea, we did observe a reduced bacterial alpha diversity in overweight as compared to normal weight subjects (p = 0.002).

Conclusion

Green tea supplementation for 12 weeks did not have a significant effect on composition of the gut microbiota.

Trial Registration

ClinicalTrials.gov NCT01556321

]]>
<![CDATA[Idelalisib and caffeine reduce suppression of T cell responses mediated by activated chronic lymphocytic leukemia cells]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbd13

Chronic lymphocytic leukemia (CLL) is associated with T cell dysfunction. Activated CLL cells are found within the lymphoid tumor micro-environment and overcoming immuno-suppression induced by these cells may improve anti-CLL immune responses. However, the mechanisms by which activated CLL cells inhibit T cell responses, and reagents targeting such mechanisms have not been identified. Here we demonstrate that the ability of in vitro activated CLL cells to suppress T cell proliferation is not reversed by the presence of ecto-nuclease inhibitors or blockade of IL-10, PD-1 and CTLA-4 pathways. Caffeine is both an adenosine receptor antagonist and a phosphatidylinositol-3-kinase, p110δ (PI3Kδ) inhibitor and, at physiologically relevant levels, significantly reversed suppression. Significant reversal of suppression was also observed with the PI3Kδ specific inhibitor Idelalisib but not with adenosine receptor specific antagonists. Furthermore, addition of caffeine or Idelalisib to activated CLL cells significantly inhibited phosphorylation of AKT, a downstream kinase of PI3K, but did not affect CLL viability. These results suggest that caffeine, in common with Idelalisib, reduces the immuno-suppressive activity of activated CLL cells by inhibiting PI3Kδ. These findings raise the possibility that these compounds may provide a useful therapeutic adjunct by reducing immuno-suppression within the tumor micro-environment of CLL.

]]>
<![CDATA[Nicotine Induces Podocyte Apoptosis through Increasing Oxidative Stress]]> https://www.researchpad.co/article/5989db0bab0ee8fa60bca2f2

Background

Cigarette smoking plays an important role in the progression of chronic kidney disease (CKD). Nicotine, one of the major components of cigarette smoking, has been demonstrated to increase proliferation of renal mesangial cells. In this study, we examined the effect of nicotine on podocyte injury.

Methods

To determine the expression of nicotinic acetylcholine receptors (nAChR subunits) in podocytes, cDNAs and cell lysate of cultured human podocytes were used for the expression of nAChR mRNAs and proteins, respectively; and mouse renal cortical sections were subjected to immunofluorescant staining. We also studied the effect of nicotine on podocyte nephrin expression, reactive oxygen species (ROS) generation (via DCFDA loading followed by fluorometric analysis), proliferation, and apoptosis (morphologic assays). We evaluated the effect of nicotine on podocyte downstream signaling including phosphorylation of ERK1/2, JNK, and p38 and established causal relationships by using respective inhibitors. We used nAChR antagonists to confirm the role of nicotine on podocyte injury.

Results

Human podocytes displayed robust mRNA and protein expression of nAChR in vitro studies. In vivo studies, mice renal cortical sections revealed co-localization of nAChRs along with synaptopodin. In vitro studies, nephrin expression in podocyte was decreased by nicotine. Nicotine stimulated podocyte ROS generation; nonetheless, antioxidants such as N-acetyl cysteine (NAC) and TEMPOL (superoxide dismutase mimetic agent) inhibited this effect of nicotine. Nicotine did not modulate proliferation but promoted apoptosis in podocytes. Nicotine enhanced podocyte phosphorylation of ERK1/2, JNK, and p38, and their specific inhibitors attenuated nicotine-induced apoptosis. nAChR antagonists significantly suppressed the effects of nicotine on podocyte.

Conclusions

Nicotine induces podocyte apoptosis through ROS generation and associated downstream MAPKs signaling. The present study provides insight into molecular mechanisms involved in smoking associated progression of chronic kidney disease.

]]>
<![CDATA[The Pharmacochaperone Activity of Quinine on Bitter Taste Receptors]]> https://www.researchpad.co/article/5989da03ab0ee8fa60b74f31

Bitter taste is one of the five basic taste sensations which is mediated by 25 bitter taste receptors (T2Rs) in humans. The mechanism of bitter taste signal transduction is not yet elucidated. The cellular processes underlying T2R desensitization including receptor internalization, trafficking and degradation are yet to be studied. Here, using a combination of molecular and pharmacological techniques we show that T2R4 is not internalized upon agonist treatment. Pretreatment with bitter agonist quinine led to a reduction in subsequent quinine-mediated calcium responses to 35 ± 5% compared to the control untreated cells. Interestingly, treatment with different bitter agonists did not cause internalization of T2R4. Instead, quinine treatment led to a 2-fold increase in T2R4 cell surface expression which was sensitive to Brefeldin A, suggesting a novel pharmacochaperone activity of quinine. This phenomenon of chaperone activity of quinine was also observed for T2R7, T2R10, T2R39 and T2R46. Our results suggest that the observed action of quinine for these T2Rs is independent of its agonist activity. This study provides novel insights into the pharmacochaperone activity of quinine and possible mechanism of T2R desensitization, which is of fundamental importance in understanding the mechanism of bitter taste signal transduction.

]]>
<![CDATA[Differential Expression of FosB Proteins and Potential Target Genes in Select Brain Regions of Addiction and Depression Patients]]> https://www.researchpad.co/article/5989dacfab0ee8fa60bb58cd

Chronic exposure to stress or drugs of abuse has been linked to altered gene expression throughout the body, and changes in gene expression in discrete brain regions are thought to underlie many psychiatric diseases, including major depressive disorder and drug addiction. Preclinical models of these disorders have provided evidence for mechanisms of this altered gene expression, including transcription factors, but evidence supporting a role for these factors in human patients has been slow to emerge. The transcription factor ΔFosB is induced in the prefrontal cortex (PFC) and hippocampus (HPC) of rodents in response to stress or cocaine, and its expression in these regions is thought to regulate their “top down” control of reward circuitry, including the nucleus accumbens (NAc). Here, we use biochemistry to examine the expression of the FosB family of transcription factors and their potential gene targets in PFC and HPC postmortem samples from depressed patients and cocaine addicts. We demonstrate that ΔFosB and other FosB isoforms are downregulated in the HPC but not the PFC in the brains of both depressed and addicted individuals. Further, we show that potential ΔFosB transcriptional targets, including GluA2, are also downregulated in the HPC but not PFC of cocaine addicts. Thus, we provide the first evidence of FosB gene expression in human HPC and PFC in these psychiatric disorders, and in light of recent findings demonstrating the critical role of HPC ΔFosB in rodent models of learning and memory, these data suggest that reduced ΔFosB in HPC could potentially underlie cognitive deficits accompanying chronic cocaine abuse or depression.

]]>
<![CDATA[Alkaloids Modulate Motility, Biofilm Formation and Antibiotic Susceptibility of Uropathogenic Escherichia coli]]> https://www.researchpad.co/article/5989da53ab0ee8fa60b8e3bf

Alkaloid-containing natural compounds have shown promise in the treatment of microbial infections. However, practical application of many of these compounds is pending a mechanistic understanding of their mode of action. We investigated the effect of two alkaloids, piperine (found in black pepper) and reserpine (found in Indian snakeroot), on the ability of the uropathogenic bacterium Escherichia coli CFT073 to colonize abiotic surfaces. Sub-inhibitory concentrations of both compounds (0.5 to 10 µg/mL) decreased bacterial swarming and swimming motilities and increased biofilm formation. qRT-PCR revealed a decrease in the expression of the flagellar gene (fliC) and motility genes (motA and motB) along with an increased expression of adhesin genes (fimA, papA, uvrY). Interestingly, piperine increased penetration of the antibiotics ciprofloxacin and azithromycin into E. coli CFT073 biofilms and consequently enhanced the ability of these antibiotics to disperse pre-established biofilms. The findings suggest that these alkaloids can potentially affect bacterial colonization by hampering bacterial motility and may aid in the treatment of infection by increasing antibiotic penetration in biofilms.

]]>
<![CDATA[The Quality of Selected Essential Medicines Sold in Accredited Drug Dispensing Outlets and Pharmacies in Tanzania]]> https://www.researchpad.co/article/5989db25ab0ee8fa60bd0185

Introduction

The purpose of this study was to investigate the quality of a select group of medicines sold in accredited drug dispensing outlets (ADDOs) and pharmacies in different regions of Tanzania as part of an in-depth cross-sectional assessment of community access to medicines and community use of medicines.

Methods

We collected 242 samples of amoxicillin trihydrate, artemether-lumefantrine (ALu), co-trimoxazole, ergometrine maleate, paracetamol, and quinine from selected ADDOs and pharmacies in Mbeya, Morogoro, Singida, and Tanga regions. The analysis included physical examination and testing with validated analytical techniques. Assays for eight of nine products were conducted using high-performance thin-layer chromatography (HPTLC). For ALu tablets, we used a two-tiered approach, where tier 1 was a semi-quantitative Global Pharma Health Fund-Minilab® method and tier 2 was high-performance liquid chromatography (HPLC) as described in The International Pharmacopoeia’s monograph for artemether-lumefantrine.

Results and Discussion

The physical examination of samples revealed no defects in the solid and oral liquid dosage forms, but unusual discoloration in an injectable solution, ergometrine maleate. For ALu, the results showed that of 38 samples, 31 (81.6%) passed tier 1 testing and 7 (18.4%) gave inconclusive drug content results. The inconclusive ALu samples were submitted for tier 2 testing and all met the quality standards. The pass rate using the HPTLC and TLC/HPLC assays was 93.8%; the failures were the ergometrine maleate samples purchased from both ADDOs and pharmacies. The disintegration testing of the solid dosage forms was conducted in accordance with US Pharmacopeia monographs. Only two samples of paracetamol, 1.2% of the solid dosage forms, failed to comply to standards. The study revealed a high overall rate of 92.6% of samples that met the quality standards. Although the overall failure rate was 7.4%, it is important to note that this was largely limited to one product and likely due to poor distribution and storage rather than poor manufacturing practices.

Conclusions

Over 90% of the medicines sold in ADDOs and pharmacies met quality standards. Policy makers need to reconsider ergometrine maleate’s place on the list of medicines that ADDOs are allowed to dispense, by either substituting a more temperature-stable therapeutically equivalent product or requiring those sites to have refrigerators, which is not a feasible option for rural Tanzania.

]]>
<![CDATA[A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction]]> https://www.researchpad.co/article/5989da0eab0ee8fa60b78a01

Chronic sleep restriction induces blood-brain barrier disruption and increases pro-inflammatory mediators in rodents. Those inflammatory mediators may modulate the blood-brain barrier and constitute a link between sleep loss and blood-brain barrier physiology. We propose that adenosine action on its A2A receptor may be modulating the blood-brain barrier dynamics in sleep-restricted rats. We administrated a selective A2A adenosine receptor antagonist (SCH58261) in sleep-restricted rats at the 10th day of sleep restriction and evaluated the blood-brain barrier permeability to dextrans coupled to fluorescein (FITC-dextrans) and Evans blue. In addition, we evaluated by western blot the expression of tight junction proteins (claudin-5, occludin, ZO-1), adherens junction protein (E-cadherin), A2A adenosine receptor, adenosine-synthesizing enzyme (CD73), and neuroinflammatory markers (Iba-1 and GFAP) in the cerebral cortex, hippocampus, basal nuclei and cerebellar vermis. Sleep restriction increased blood-brain barrier permeability to FITC-dextrans and Evans blue, and the effect was reverted by the administration of SCH58261 in almost all brain regions, excluding the cerebellum. Sleep restriction increased the expression of A2A adenosine receptor only in the hippocampus and basal nuclei without changing the expression of CD73 in all brain regions. Sleep restriction reduced the expression of tight junction proteins in all brain regions, except in the cerebellum; and SCH58261 restored the levels of tight junction proteins in the cortex, hippocampus and basal nuclei. Finally, sleep restriction induced GFAP and Iba-1 overexpression that was attenuated with the administration of SCH58261. These data suggest that the action of adenosine on its A2A receptor may have a crucial role in blood-brain barrier dysfunction during sleep loss probably by direct modulation of brain endothelial cell permeability or through a mechanism that involves gliosis with subsequent inflammation and increased blood-brain barrier permeability.

]]>
<![CDATA[Molecular Mechanisms for Drug Hypersensitivity Induced by the Malaria Parasite’s Chloroquine Resistance Transporter]]> https://www.researchpad.co/article/5989da1aab0ee8fa60b7c7f7

Mutations in the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite’s digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite’s hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite’s survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite’s hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding clinically-relevant observations of inverse drug susceptibilities in the malaria parasite.

]]>