ResearchPad - amniotes https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Genetic diversity of <i>Echinococcus multilocularis</i> and <i>Echinococcus granulosus sensu lato</i> in Kyrgyzstan: The A2 haplotype of <i>E</i>. <i>multilocularis</i> is the predominant variant infecting humans]]> https://www.researchpad.co/article/elastic_article_13871 Analysis of the genetic variability in Echinococcus species from different endemic countries have contributed to the knowledge in the taxonomy and phylogeography of these parasites. The most important species of this genus, Echinococcus granulosus sensu lato and Echinococcus multilocularis, co-exist in Kyrgyzstan causing serious public health issues. E. granulosus s.l. causes cystic echinococcosis and E. multilocularis is the causative agent of alveolar echinococcosis. The most relevant finding of our study is the identification of the cob/nad2/cox1 A2 haplotype of E. multilocularis as the most commonly found in humans and dogs. However, it remains unknown if this variant of E. multilocularis, based on genetic differences in mitochondrial genes, presents differences in virulence which could have contributed to the emergence of alveolar echinococcosis in Kyrgyzstan. The results also show a number of non-previously described genetic variants of E. multilocularis and E. granulosus s.s.

]]>
<![CDATA[Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator]]> https://www.researchpad.co/article/elastic_article_13838 Cell-autonomous circadian clocks are transcriptional/translational feedback loops that co-ordinate almost all mammalian physiology and behaviour. Although their genetic basis is well understood, we are largely ignorant of the natural behaviour of clock proteins and how they work within these loops. This is particularly true for the essential transcriptional activator BMAL1. To address this, we created and validated a mouse carrying a fully functional knock-in allele that encodes a fluorescent fusion of BMAL1 (Venus::BMAL1). Quantitative live imaging in tissue explants and cells, including the central clock of the suprachiasmatic nucleus (SCN), revealed the circadian expression, nuclear-cytoplasmic mobility, fast kinetics and surprisingly low molecular abundance of endogenous BMAL1, providing significant quantitative insights into the intracellular mechanisms of circadian timing at single-cell resolution.

]]>
<![CDATA[Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice]]> https://www.researchpad.co/article/elastic_article_13831 Mice that carry a heterozygous, autism spectrum disorder-risk C456Y mutation in the NMDA receptor (NMDAR) subunit GluN2B show decreased protein levels, hippocampal NMDAR currents, and NMDAR-dependent long-term depression and have abnormal anxiolytic-like behavior. Early, but not late, treatment of the young mice with the NMDAR agonist D-cycloserine rescues these phenotypes.

]]>
<![CDATA[A model for the assessment of bluetongue virus serotype 1 persistence in Spain]]> https://www.researchpad.co/article/elastic_article_11225 Bluetongue virus (BTV) is an arbovirus of ruminants that has been circulating in Europe continuously for more than two decades and has become endemic in some countries such as Spain. Spain is ideal for BTV epidemiological studies since BTV outbreaks from different sources and serotypes have occurred continuously there since 2000; BTV-1 has been reported there from 2007 to 2017. Here we develop a model for BTV-1 endemic scenario to estimate the risk of an area becoming endemic, as well as to identify the most influential factors for BTV-1 persistence. We created abundance maps at 1-km2 spatial resolution for the main vectors in Spain, Culicoides imicola and Obsoletus and Pulicaris complexes, by combining environmental satellite data with occurrence models and a random forest machine learning algorithm. The endemic model included vector abundance and host-related variables (farm density). The three most relevant variables in the endemic model were the abundance of C. imicola and Obsoletus complex and density of goat farms (AUC 0.86); this model suggests that BTV-1 is more likely to become endemic in central and southwestern regions of Spain. It only requires host- and vector-related variables to identify areas at greater risk of becoming endemic for bluetongue. Our results highlight the importance of suitable Culicoides spp. prediction maps for bluetongue epidemiological studies and decision-making about control and eradication measures.

]]>
<![CDATA[Thalamic, cortical, and amygdala involvement in the processing of a natural sound cue of danger]]> https://www.researchpad.co/article/elastic_article_7872 When others stop and silence ensues, animals respond as if threatened. This study highlights the brain areas involved in listening to the dangerous silence.

]]>
<![CDATA[Breeding practices and trait preferences of smallholder farmers for indigenous sheep in the northwest highlands of Ethiopia: Inputs to design a breeding program]]> https://www.researchpad.co/article/elastic_article_7865 The aim of this study was to identify breeding practices and trait preferences for indigenous sheep in three districts (Estie, Farta and Lay Gayient) located in the northwest highlands of Ethiopia. Questionnaire survey and choice experiment methods were used to collect data from 370 smallholder farmers. Respondents were selected randomly among smallholder farmers who own sheep in the aforementioned districts. A generalized multinomial logit model was employed to examine preferences for sheep attributes, while descriptive statistics and index values were computed to describe sheep breeding practices. Having the highest index value of 0.36, income generation was ranked as the primary reason for keeping sheep, followed by meat and manure sources. The average flock size per smallholder farmer was 10.21 sheep. The majority of the smallholder farmers (91%) have the experience of selecting breeding rams and ewes within their own flock using diverse criteria. Given the highest index value of 0.34, body size was ranked as a primary ram and ewe selection criteria, followed by coat color. Furthermore, choice modeling results revealed that tail type, body size, coat color, growth rate, horn and ear size have shown significant influences on smallholder farmers’ preference for breeding rams (P<0.01). The part-worth utility coefficients were positive for all ram attributes except ear size. For breeding ewes, mothering ability, coat color, body size, lambing interval, growth rate, tail type and litter size have shown significant effects on choice preferences of smallholder farmers (P<0.05). Moreover, significant scale heterogeneity was observed among respondents for ewe attributes (P<0.001). Overall, the results implied that sheep breeding objectives suitable for the northwest highlands of the country can be derived from traits such as linear body measurement, weight and survival at different ages, and lambing intervals. However, selection decisions at the smallholder level should not only be based on estimated breeding values of traits included in the breeding objective but instead, incorporate ways to address farmers’ preference for qualitative traits.

]]>
<![CDATA[Methamphetamine administration increases hepatic CYP1A2 but not CYP3A activity in female guinea pigs]]> https://www.researchpad.co/article/elastic_article_7848 Methamphetamine use has increased over the past decade and the first use of methamphetamine is most often when women are of reproductive age. Methamphetamine accumulates in the liver; however, little is known about the effect of methamphetamine use on hepatic drug metabolism. Methamphetamine was administered on 3 occassions to female Dunkin Hartley guinea pigs of reproductive age, mimicking recreational drug use. Low doses of test drugs caffeine and midazolam were administered after the third dose of methamphetamine to assess the functional activity of cytochrome P450 1A2 and 3A, respectively. Real-time quantitative polymerase chain reaction was used to quantify the mRNA expression of factors involved in glucocorticoid signalling, inflammation, oxidative stress and drug transporters. This study showed that methamphetamine administration decreased hepatic CYP1A2 mRNA expression, but increased CYP1A2 enzyme activity. Methamphetamine had no effect on CYP3A enzyme activity. In addition, we found that methamphetamine may also result in changes in glucocorticoid bioavailability, as we found a decrease in 11β-hydroxysteroid dehydrogenase 1 mRNA expression, which converts inactive cortisone into active cortisol. This study has shown that methamphetamine administration has the potential to alter drug metabolism via the CYP1A2 metabolic pathway in female guinea pigs. This may have clinical implications for drug dosing in female methamphetamine users of reproductive age.

]]>
<![CDATA[Effects of scent lure on camera trap detections vary across mammalian predator and prey species]]> https://www.researchpad.co/article/elastic_article_7840 Camera traps are a unique survey tool used to monitor a wide variety of mammal species. Camera trap (CT) data can be used to estimate animal distribution, density, and behaviour. Attractants, such as scent lures, are often used in an effort to increase CT detections; however, the degree which the effects of attractants vary across species is not well understood. We investigated the effects of scent lure on mammal detections by comparing detection rates between 404 lured and 440 unlured CT stations sampled in Alberta, Canada over 120 day survey periods between February and August in 2015 and 2016. We used zero-inflated negative binomial generalized linear mixed models to test the effect of lure on detection rates for a) all mammals, b) six functional groups (all predator species, all prey, large carnivores, small carnivores, small mammals, ungulates), and c) four varied species of management interest (fisher, Pekania pennanti; gray wolf, Canis lupus; moose, Alces alces; and Richardson’s ground squirrel; Urocitellus richardsonii). Mammals were detected at 800 of the 844 CTs, with nearly equal numbers of total detections at CTs with (7110) and without (7530) lure, and variable effects of lure on groups and individual species. Scent lure significantly increased detections of predators as a group, including large and small carnivore sub-groups and fisher specifically, but not of gray wolf. There was no effect of scent lure on detections of prey species, including the small mammal and ungulate sub-groups and moose and Richardson’s ground squirrel specifically. We recommend that researchers explicitly consider the variable effects of scent lure on CT detections across species when designing, interpreting, or comparing multi-species surveys. Additional research is needed to further quantify variation in species responses to scent lures and other attractants, and to elucidate the effect of attractants on community-level inferences from camera trap surveys.

]]>
<![CDATA[Digestibility of black soldier fly larvae (<i>Hermetia illucens</i>) fed to leopard geckos (<i>Eublepharis macularius</i>)]]> https://www.researchpad.co/article/elastic_article_7714 Black soldier fly (BSF) larvae have been marketed as an excellent choice for providing calcium to reptiles without the need of dusting or gut loading. However, previous studies have indicated that they have limited calcium digestibility and are deficient in fat soluble vitamins (A, D3, and E). In this feeding and digestibility trial, 24 adult male leopard geckos were fed one of three diets for 4 months: 1) whole, vitamin A gut loaded larvae; 2) needle pierced, vitamin A gut loaded larvae; or 3) whole, non-gut loaded larvae. Fecal output from the geckos was collected daily and apparent digestibility was calculated for dry matter, protein, fat, and minerals. There were no differences in digestibility coefficients among groups. Most nutrients were well digested by the leopard geckos when compared to previous studies, with the exception of calcium (digestibility co-efficient 43%), as the calcium-rich exoskeleton usually remained intact after passage through the GI tract. Biochemistry profiles revealed possible deficits occurring over time for calcium, sodium, and total protein. In regards to vitamin A digestibility, plasma and liver vitamin A concentrations were significantly higher in the supplemented groups (plasma- gut loaded groups: 33.38 ± 7.11 ng/ml, control group: 25.8 ± 6.72 ng/ml, t = 1.906, p = 0.04; liver- gut loaded groups: 28.67 ± 18.90 μg/g, control group: 14.13 ± 7.41 μg/g, t = 1.951, p = 0.03). While leopard geckos are able to digest most of the nutrients provided by BSF larvae, including those that have been gut loaded, more research needs to be performed to assess whether or not they provide adequate calcium in their non-supplemented form.

]]>
<![CDATA[Virulence factors and antibiograms of <i>Escherichia coli</i> isolated from diarrheic calves of Egyptian cattle and water buffaloes]]> https://www.researchpad.co/article/elastic_article_8462 Diarrhea caused by Escherichia coli in calves is an important problem in terms of survivability, productivity and treatment costs. In this study, 88 of 150 diarrheic animals tested positive for E. coli. Of these, 54 samples had mixed infection with other bacterial and/or parasitic agents. There are several diarrheagenic E. coli pathotypes including enteropathogenic E. coli (EPEC), Shiga-toxin producing E. coli (STEC), enterotoxigenic E. coli (ETEC) and necrotoxigenic E. coli (NTEC). Molecular detection of virulence factors Stx2, Cdt3, Eae, CNF2, F5, Hly, Stx1, and ST revealed their presence at 39.7, 27.2, 19.3, 15.9, 13.6, 9.0, 3.4, and 3.4 percent, respectively. As many as 13.6% of the isolates lacked virulence genes and none of the isolate had LT or CNF1 toxin gene. The odds of isolating ETEC from male calves was 3.6 times (95% CI: 1.1, 12.4; P value = 0.042) that of female calves, whereas the odds of isolating NTEC from male calves was 72.9% lower (95% CI: 91.3% lower, 15.7% lower; P value = 0.024) than that in females. The odds of isolating STEC in winter was 3.3 times (95% CI: 1.1, 10.3; P value = 0.037) that of spring. Antibiograms showed 48 (54.5%) of the isolates to be multi-drug resistant. The percent resistance to tetracycline, streptomycin, ampicillin, and trimethoprim-sulfamethoxazole was 79.5, 67.0, 54.5, and 43.0, respectively. Ceftazidime (14.8%), amoxicillin-clavulanic acid (13.6%) and aztreonam (11.3%) showed the lowest resistance, and none of the isolates was resistant to imipenem. The results of this study can help improve our understanding of the epidemiological aspects of E. coli infection and to devise strategies for protection against it. The prevalence of E. coli pathotypes can help potential buyers of calves to avoid infected premises. The antibiograms in this study emphasizes the risks associated with the random use of antibiotics.

]]>
<![CDATA[Wing morphology predicts individual niche specialization in <i>Pteronotus mesoamericanus</i> (Mammalia: Chiroptera)]]> https://www.researchpad.co/article/elastic_article_7639 Morphological variation between individuals can increase niche segregation and decrease intraspecific competition when heterogeneous individuals explore their environment in different ways. Among bat species, wing shape correlates with flight maneuverability and habitat use, with species that possess broader wings typically foraging in more cluttered habitats. However, few studies have investigated the role of morphological variation in bats for niche partitioning at the individual level. To determine the relationship between wing shape and diet, we studied a population of the insectivorous bat species Pteronotus mesoamericanus in the dry forest of Costa Rica. Individual diet was resolved using DNA metabarcoding, and bat wing shape was assessed using geometric morphometric analysis. Inter-individual variation in wing shape showed a significant relationship with both dietary dissimilarity based on Bray-Curtis estimates, and nestedness derived from an ecological network. Individual bats with broader and more rounded wings were found to feed on a greater diversity of arthropods (less nested) in comparison to individuals with triangular and pointed wings (more nested). We conclude that individual variation in bat wing morphology can impact foraging efficiency leading to the observed overall patterns of diet specialization and differentiation within the population.

]]>
<![CDATA[Assessment of the genomic prediction accuracy for feed efficiency traits in meat-type chickens]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc4ab

Feed represents the major cost of chicken production. Selection for improving feed utilization is a feasible way to reduce feed cost and greenhouse gas emissions. The objectives of this study were to investigate the efficiency of genomic prediction for feed conversion ratio (FCR), residual feed intake (RFI), average daily gain (ADG) and average daily feed intake (ADFI) and to assess the impact of selection for feed efficiency traits FCR and RFI on eviscerating percentage (EP), breast muscle percentage (BMP) and leg muscle percentage (LMP) in meat-type chickens. Genomic prediction was assessed using a 4-fold cross-validation for two validation scenarios. The first scenario was a random family sampling validation (CVF), and the second scenario was a random individual sampling validation (CVR). Variance components were estimated based on the genomic relationship built with single nucleotide polymorphism markers. Genomic estimated breeding values (GEBV) were predicted using a genomic best linear unbiased prediction model. The accuracies of GEBV were evaluated in two ways: the correlation between GEBV and corrected phenotypic value divided by the square root of heritability, i.e., the correlation-based accuracy, and model-based theoretical accuracy. Breeding values were also predicted using a conventional pedigree-based best linear unbiased prediction model in order to compare accuracies of genomic and conventional predictions. The heritability estimates of FCR and RFI were 0.29 and 0.50, respectively. The heritability estimates of ADG, ADFI, EP, BMP and LMP ranged from 0.34 to 0.53. In the CVF scenario, the correlation-based accuracy and the theoretical accuracy of genomic prediction for FCR were slightly higher than those for RFI. The correlation-based accuracies for FCR, RFI, ADG and ADFI were 0.360, 0.284, 0.574 and 0.520, respectively, and the model-based theoretical accuracies were 0.420, 0.414, 0.401 and 0.382, respectively. In the CVR scenario, the correlation-based accuracy and the theoretical accuracy of genomic prediction for FCR was lower than RFI, which was different from the CVF scenario. The correlation-based accuracies for FCR, RFI, ADG and ADFI were 0.449, 0.593, 0.581 and 0.627, respectively, and the model-based theoretical accuracies were 0.577, 0.629, 0.631 and 0.638, respectively. The accuracies of genomic predictions were 0.371 and 0.322 higher than the conventional pedigree-based predictions for the CVF and CVR scenarios, respectively. The genetic correlations of FCR with EP, BMP and LMP were -0.427, -0.156 and -0.338, respectively. The correlations between RFI and the three carcass traits were -0.320, -0.404 and -0.353, respectively. These results indicate that RFI and FCR have a moderate accuracy of genomic prediction. Improving RFI and FCR could be favourable for EP, BMP and LMP. Compared with FCR, which can be improved by selection for ADG in typical meat-type chicken breeding programs, selection for RFI could lead to extra improvement in feed efficiency.

]]>
<![CDATA[Recapitulation of the accessible interface of biopsy-derived canine intestinal organoids to study epithelial-luminal interactions]]> https://www.researchpad.co/article/N24a1d01a-2f11-47b7-a628-8330af6f7455

Recent advances in canine intestinal organoids have expanded the option for building a better in vitro model to investigate translational science of intestinal physiology and pathology between humans and animals. However, the three-dimensional geometry and the enclosed lumen of canine intestinal organoids considerably hinder the access to the apical side of epithelium for investigating the nutrient and drug absorption, host-microbiome crosstalk, and pharmaceutical toxicity testing. Thus, the creation of a polarized epithelial interface accessible from apical or basolateral side is critical. Here, we demonstrated the generation of an intestinal epithelial monolayer using canine biopsy-derived colonic organoids (colonoids). We optimized the culture condition to form an intact monolayer of the canine colonic epithelium on a nanoporous membrane insert using the canine colonoids over 14 days. Transmission and scanning electron microscopy revealed a physiological brush border interface covered by the microvilli with glycocalyx, as well as the presence of mucin granules, tight junctions, and desmosomes. The population of stem cells as well as differentiated lineage-dependent epithelial cells were verified by immunofluorescence staining and RNA in situ hybridization. The polarized expression of P-glycoprotein efflux pump was confirmed at the apical membrane. Also, the epithelial monolayer formed tight- and adherence-junctional barrier within 4 days, where the transepithelial electrical resistance and apparent permeability were inversely correlated. Hence, we verified the stable creation, maintenance, differentiation, and physiological function of a canine intestinal epithelial barrier, which can be useful for pharmaceutical and biomedical researches.

]]>
<![CDATA[Influence of the tubular network on the characteristics of calcium transients in cardiac myocytes]]> https://www.researchpad.co/article/N7f446290-780e-4486-a1de-95187c6060a1

Transverse and axial tubules (TATS) are an essential ingredient of the excitation-contraction machinery that allow the effective coupling of L-type Calcium Channels (LCC) and ryanodine receptors (RyR2). They form a regular network in ventricular cells, while their presence in atrial myocytes is variable regionally and among animal species We have studied the effect of variations in the TAT network using a bidomain computational model of an atrial myocyte with variable density of tubules. At each z-line the t-tubule length is obtained from an exponential distribution, with a given mean penetration length. This gives rise to a distribution of t-tubules in the cell that is characterized by the fractional area (F.A.) occupied by the t-tubules. To obtain consistent results, we average over different realizations of the same mean penetration length. To this, in some simulations we add the effect of a network of axial tubules. Then we study global properties of calcium signaling, as well as regional heterogeneities and local properties of sparks and RyR2 openings. In agreement with recent experiments in detubulated ventricular and atrial cells, we find that detubulation reduces the calcium transient and synchronization in release. However, it does not affect sarcoplasmic reticulum (SR) load, so the decrease in SR calcium release is due to regional differences in Ca2+ release, that is restricted to the cell periphery in detubulated cells. Despite the decrease in release, the release gain is larger in detubulated cells, due to recruitment of orphaned RyR2s, i.e, those that are not confronting a cluster of LCCs. This probably provides a safeguard mechanism, allowing physiological values to be maintained upon small changes in the t-tubule density. Finally, we do not find any relevant change in spark properties between tubulated and detubulated cells, suggesting that the differences found in experiments could be due to differential properties of the RyR2s in the membrane and in the t-tubules, not incorporated in the present model. This work will help understand the effect of detubulation, that has been shown to occur in disease conditions such as heart failure (HF) in ventricular cells, or atrial fibrillation (AF) in atrial cells.

]]>
<![CDATA[Risk factors associated to a high Mycobacterium tuberculosis complex seroprevalence in wild boar (Sus scrofa) from a low bovine tuberculosis prevalence area]]> https://www.researchpad.co/article/Nfbbd03ef-7cb8-4d82-b605-16cf8ee0d77e

Animal tuberculosis is a worldwide zoonotic disease caused principally by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTC). In southern Iberian Peninsula, wild reservoirs such as the wild boar, among other factors, have prevented the eradication of bovine tuberculosis. However, most of the studies have been focused on south-central Spain, where the prevalence of tuberculosis is high among wild ungulates and cattle herds. In northern regions, where wild boar density and bovine tuberculosis prevalence are lower, fewer studies have been carried out and the role of this species is still under debate. The aim of this study was to describe the temporal and spatial distribution of antibodies against MTC in wild boar from the Basque Country, northern Spain. Sera from 1902 animals were collected between 2010 and 2016. The seroprevalence was determined with an in house enzyme-linked immunosorbent assay and the search of risk factors was assessed by Generalized Linear Models. Overall, 17% of wild boars (326/1902; 95%CI, [15.5%–18.9%]) showed antibodies against MTC. Risk factors associated with seropositivity were the year and location of sampling, the number of MTC positive cattle, the distance to positive farms and the percentage of shrub cover. Younger age classes were associated with increased antibody titres among seropositive individuals. The seroprevalence detected was higher than those previously reported in neighbouring regions. Hence, further studies are needed to better understand the role of wild boar in the epidemiology of tuberculosis in low tuberculosis prevalence areas and consequently, its relevance when developing control strategies.

]]>
<![CDATA[Baloxavir treatment of ferrets infected with influenza A(H1N1)pdm09 virus reduces onward transmission]]> https://www.researchpad.co/article/Nca8f7add-a1d9-4373-9c77-344aec55ea94

Influenza viruses cause seasonal outbreaks and pose a continuous pandemic threat. Although vaccines are available for influenza control, their efficacy varies each season and a vaccine for a novel pandemic virus manufactured using current technology will not be available fast enough to mitigate the effect of the first pandemic wave. Antivirals can be effective against many different influenza viruses but have not thus far been used extensively for outbreak control. Baloxavir, a recently licensed antiviral drug that targets the influenza virus endonuclease, has been shown to reduce virus shedding more effectively than oseltamivir, a widely used neuraminidase inhibitor drug. Thus it is possible that treatment with baloxavir might also interrupt onward virus transmission. To test this, we utilized the ferret model, which is the most commonly used animal model to study influenza virus transmission. We established a subcutaneous baloxavir administration method in ferrets which achieved similar pharmacokinetics to the approved human oral dose. Transmission studies were then conducted in two different locations with different experimental setups to compare the onward transmission of A(H1N1)pdm09 virus from infected ferrets treated with baloxavir, oseltamivir or placebo to naïve sentinel ferrets exposed either indirectly in adjacent cages or directly by co-housing. We found that baloxavir treatment reduced infectious viral shedding in the upper respiratory tract of ferrets compared to placebo, and reduced the frequency of transmission amongst sentinels in both experimental setups, even when treatment was delayed until 2 days post-infection. In contrast, oseltamivir treatment did not substantially affect viral shedding or transmission compared to placebo. We did not detect the emergence of baloxavir-resistant variants in treated animals or in untreated sentinels. Our results support the concept that antivirals which decrease viral shedding could also reduce influenza transmission in the community.

]]>
<![CDATA[Identification of separation-related problems in domestic cats: A questionnaire survey]]> https://www.researchpad.co/article/N096b59e8-8c6c-4ade-a9c3-2213a89d5014

Identifying and preventing the occurrence of separation-related problems (SRP) in companion animals are relevant to animal welfare and the quality of human-pet interactions. The SRP are defined as a set of behaviors and physiological signs displayed by the animal when separated from its attachment person. In cats, SRP has been insufficiently studied. Thus, the objective of this study was to develop a questionnaire for cat owners which identifies behaviors that may indicate SRP, as well as relates the occurrence of SRP to the management practices applied in the sampled cats. The associations of SRP with cats’ characteristics, as well as owner, environmental, and management traits were investigated. The questionnaire was developed based on the scientific literature about separation anxiety syndrome in dogs and a few papers in cats, and it was completed by 130 owners of 223 cats. Analysis of owners’ answers was done through categorization and acquisition of relative frequencies of each response category, followed by Fisher’s exact test, chi-square tests in contingency table and Multiple Correspondence Analysis. Among the sampled animals, 13.45% (30 / 223) met at least one of the behavioral criteria we used to define SRP. Destructive behavior was the most frequently reported behavior (66.67%, 20 / 30), followed by excessive vocalization (63.33%, 19 / 30), urination in inappropriate places (60.00%, 18 / 30), depression-apathy (53.33%, 16 / 30), aggressiveness (36.67%, 11 / 30) and agitation-anxiety (36.67%, 11 / 30) and, in lower frequency, defecation in inappropriate places (23.33%, 7 / 30). The occurrence of SRP was associated with the number of females living in the residence (P = 0.01), with not having access to toys (P = 0.04), and no other animal residing in the house (P = 0.04). Separation-related problems in domestic cats are difficult to identify due to the limited amount of knowledge regarding the issue. The questionnaire developed in this study supported identification of the main behaviors likely related to SRP in cats and could be used as a starting point for future research.

]]>
<![CDATA[Impact of confinement in vehicle trunks on decomposition and entomological colonization of carcasses]]> https://www.researchpad.co/article/Nffbdbe54-85a9-48b9-9e05-57433aec6303

In order to investigate the impact of confinement in a car trunk on decomposition and insect colonization of carcasses, three freshly killed pig (Sus scrofa domesticus Erxleben) carcasses were placed individually in the trunks of older model cars and deployed in a forested area in the southwestern region of British Columbia, Canada, together with three freshly killed carcasses which were exposed in insect-accessible protective cages in the same forest. Decomposition rate and insect colonization of all carcasses were examined twice a week for four weeks. The exposed carcasses were colonized immediately by Calliphora latifrons Hough and Calliphora vomitoria (L.) followed by Lucilia illustris (Meigen), Phormia regina (Meigen) and Protophormia terraenovae (R.-D.) (Diptera: Calliphoridae). There was a delay of three to six days before the confined carcasses were colonized, first by P. regina, followed by Pr. terraenovae. These species represented the vast majority of blow fly species on the confined carcasses. Despite the delay in colonization, decomposition progressed much more rapidly in two of the confined carcasses in comparison with the exposed carcasses due to the greatly increased temperatures inside the vehicles, with the complete skeletonization of two of the confined carcasses ocurring between nine and 13 days after death. One confined carcass was an anomaly, attracting much fewer insects, supporting fewer larval calliphorids and decomposing much more slowly than other carcasses, despite similarly increased temperatures. It was later discovered that the vehicle in which this carcass was confined had a solid metal fire wall between the passenger area and the trunk, which served to reduce insect access and release of odors. These data may be extremely valuable when analyzing cadavers found inside vehicle trunks.

]]>
<![CDATA[Exposure to dim light at night prior to conception attenuates offspring innate immune responses]]> https://www.researchpad.co/article/N231fece1-eb24-47b2-a00f-cbdce7a093c6

Functional circadian timekeeping is necessary for homeostatic control of the immune system and appropriate immune responsiveness. Disruption of natural light-dark cycles, through light at night (LAN), impairs innate and adaptive immune responses in nocturnal rodents. These altered immune responses are associated with disrupted endogenous gene transcriptional and endocrine cycles. However, few studies have addressed the multigenerational consequences of systemic circadian rhythm disruption. We hypothesized that parental exposure to dim LAN (dLAN) would alter innate immune and sickness responses to an endotoxin challenge in adult offspring gestated and reared in dark nights. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 8 weeks, then paired, mated, and thereafter housed under dark nights. Maternal exposure to dLAN prior to conception impaired febrile responses and increased splenic il-1 production in response to LPS in male offspring. Paternal pre-conception dLAN dampened offspring tnf-α expression in the hypothalamus, reduced serum bactericidal capacity, and dark phase locomotor activity. These changes occurred despite offspring being conceived, gestated, and reared under standard dark night conditions. Overall, these data suggest that dLAN has intergenerational effects on innate immunity and sickness responses.

]]>
<![CDATA[Changes in human health parameters associated with an immersive exhibit experience at a zoological institution]]> https://www.researchpad.co/article/N69289aa2-a5fc-4464-abf6-42bfa80ae1ee

Zoological institutions often use immersive, naturalistic exhibits to create an inclusive atmosphere that is inviting for visitors while providing for the welfare of animals in their collections. In this study, we investigated physiological changes in salivary cortisol and blood pressure, as well as psychological changes among visitors before and after a walk through the River’s Edge, an immersive, naturalistic exhibit at the Saint Louis Zoo. Study participants had a significant reduction in salivary cortisol and blood pressure after walking through the exhibit. Psychological assessments of mood found that most visitors felt happier, more energized, and less tense after the visit. Additionally, participants who spent more time in River’s Edge, had visited River’s Edge prior to the study, and had seen more exhibits at the Zoo prior to entering River’s Edge experienced greater psychological and/or physiological benefits. We conclude that immersive, naturalistic exhibits in zoos can elicit positive changes in physiological and psychological measures of health and well-being and argue for a greater scientific focus on the role of zoos and other green spaces in human health.

]]>