ResearchPad - ancient-dna https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A tale of textiles: Genetic characterization of historical paper mulberry barkcloth from Oceania]]> https://www.researchpad.co/article/elastic_article_15748 Humans introduced paper mulberry (Broussonetia papyrifera) from Taiwan into the Pacific over 5000 years ago as a fiber source to make barkcloth textiles that were, and still are, important cultural artifacts throughout the Pacific. We have used B. papyrifera, a species closely associated to humans, as a proxy to understand the human settlement of the Pacific Islands. We report the first genetic analysis of paper mulberry textiles from historical and archaeological contexts (200 to 50 years before present) and compare our results with genetic data obtained from contemporary and herbarium paper mulberry samples. Following stringent ancient DNA protocols, we extracted DNA from 13 barkcloth textiles. We confirmed that the fiber source is paper mulberry in nine of the 13 textiles studied using the nuclear ITS-1 marker and by statistical estimates. We detected high genetic diversity in historical Pacific paper mulberry barkcloth with a set of ten microsatellites, showing new alleles and specific genetic patterns. These genetic signatures allow tracing connections to plants from the Asian homeland, Near and Remote Oceania, establishing links not observed previously (using the same genetic tools) in extant plants or herbaria samples. These results show that historic barkcloth textiles are cultural materials amenable to genetic analysis to reveal human history and that these artifacts may harbor evidence of greater genetic diversity in Pacific B. papyrifera in the past.

]]>
<![CDATA[Inability of ‘Whole Genome Amplification’ to Improve Success Rates for the Biomolecular Detection of Tuberculosis in Archaeological Samples]]> https://www.researchpad.co/article/5989db42ab0ee8fa60bd71ff

We assessed the ability of whole genome amplification (WGA) to improve the efficiency of downstream polymerase chain reactions (PCRs) directed at ancient DNA (aDNA) of members of the Mycobacterium tuberculosis complex (MTBC). Using extracts from a variety of bones and a tooth from human skeletons with or without lesions indicative of tuberculosis, from multiple time periods, we obtained inconsistent results. We conclude that WGA does not provide any advantage in studies of MTBC aDNA. The sporadic nature of our results are probably due to the fact that WGA is itself a PCR-based procedure which, although designed to deal with fragmented DNA, might be inefficient with the low concentration of templates in an aDNA extract. As such, WGA is subject to similar, if not the same, restrictions as PCR when applied to aDNA.

]]>
<![CDATA[Post Mortem DNA Degradation of Human Tissue Experimentally Mummified in Salt]]> https://www.researchpad.co/article/5989da8eab0ee8fa60b9ee4b

Mummified human tissues are of great interest in forensics and biomolecular archaeology. The aim of this study was to analyse post mortem DNA alterations in soft tissues in order to improve our knowledge of the patterns of DNA degradation that occur during salt mummification. In this study, the lower limb of a female human donor was amputated within 24 h post mortem and mummified using a process designed to simulate the salt dehydration phase of natural or artificial mummification. Skin and skeletal muscle were sampled at multiple time points over a period of 322 days and subjected to genetic analysis. Patterns of genomic fragmentation, miscoding lesions, and overall DNA degradation in both nuclear and mitochondrial DNA was assessed by different methods: gel electrophoresis, multiplex comparative autosomal STR length amplification, cloning and sequence analysis, and PCR amplification of different fragment sizes using a damage sensitive recombinant polymerase. The study outcome reveals a very good level of DNA preservation in salt mummified tissues over the course of the experiment, with an overall slower rate of DNA fragmentation in skin compared to muscle.

]]>
<![CDATA[Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans]]> https://www.researchpad.co/article/5989da68ab0ee8fa60b925aa

When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters—including drift times and admixture rates—for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called ‘Demographic Inference with Contamination and Error’ (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%.

]]>
<![CDATA[Ancient DNA from 8400 Year-Old Çatalhöyük Wheat: Implications for the Origin of Neolithic Agriculture]]> https://www.researchpad.co/article/5989da12ab0ee8fa60b7a15b

Human history was transformed with the advent of agriculture in the Fertile Crescent with wheat as one of the founding crops. Although the Fertile Crescent is renowned as the center of wheat domestication, archaeological studies have shown the crucial involvement of Çatalhöyük in this process. This site first gained attention during the 1961–65 excavations due to the recovery of primitive hexaploid wheat. However, despite the seeds being well preserved, a detailed archaeobotanical description of the samples is missing. In this article, we report on the DNA isolation, amplification and sequencing of ancient DNA of charred wheat grains from Çatalhöyük and other Turkish archaeological sites and the comparison of these wheat grains with contemporary wheat species including T. monococcum, T. dicoccum, T. dicoccoides, T. durum and T. aestivum at HMW glutenin protein loci. These ancient samples represent the oldest wheat sample sequenced to date and the first ancient wheat sample from the Middle East. Remarkably, the sequence analysis of the short DNA fragments preserved in seeds that are approximately 8400 years old showed that the Çatalhöyük wheat stock contained hexaploid wheat, which is similar to contemporary hexaploid wheat species including both naked (T. aestivum) and hulled (T. spelta) wheat. This suggests an early transitory state of hexaploid wheat agriculture from the Fertile Crescent towards Europe spanning present-day Turkey.

]]>
<![CDATA[Ancient DNA Reveals Matrilineal Continuity in Present-Day Poland over the Last Two Millennia]]> https://www.researchpad.co/article/5989da72ab0ee8fa60b953c8

While numerous ancient human DNA datasets from across Europe have been published till date, modern-day Poland in particular, remains uninvestigated. Besides application in the reconstruction of continent-wide human history, data from this region would also contribute towards our understanding of the history of the Slavs, whose origin is hypothesized to be in East or Central Europe. Here, we present the first population-scale ancient human DNA study from the region of modern-day Poland by establishing mitochondrial DNA profiles for 23 samples dated to 200 BC – 500 AD (Roman Iron Age) and for 20 samples dated to 1000–1400 AD (Medieval Age). Our results show that mitochondrial DNA sequences from both periods belong to haplogroups that are characteristic of contemporary West Eurasia. Haplotype sharing analysis indicates that majority of the ancient haplotypes are widespread in some modern Europeans, including Poles. Notably, the Roman Iron Age samples share more rare haplotypes with Central and Northeast Europeans, whereas the Medieval Age samples share more rare haplotypes with East-Central and South-East Europeans, primarily Slavic populations. Our data demonstrates genetic continuity of certain matrilineages (H5a1 and N1a1a2) in the area of present-day Poland from at least the Roman Iron Age until present. As such, the maternal gene pool of present-day Poles, Czechs and Slovaks, categorized as Western Slavs, is likely to have descended from inhabitants of East-Central Europe during the Roman Iron Age.

]]>
<![CDATA[Ancient DNA Reveals Late Pleistocene Existence of Ostriches in Indian Sub-Continent]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbd06

Ancient DNA (aDNA) analysis of extinct ratite species is of considerable interest as it provides important insights into their origin, evolution, paleogeographical distribution and vicariant speciation in congruence with continental drift theory. In this study, DNA hotspots were detected in fossilized eggshell fragments of ratites (dated ≥25000 years B.P. by radiocarbon dating) using confocal laser scanning microscopy (CLSM). DNA was isolated from five eggshell fragments and a 43 base pair (bp) sequence of a 16S rRNA mitochondrial-conserved region was successfully amplified and sequenced from one of the samples. Phylogenetic analysis of the DNA sequence revealed a 92% identity of the fossil eggshells to Struthio camelus and their position basal to other palaeognaths, consistent with the vicariant speciation model. Our study provides the first molecular evidence for the presence of ostriches in India, complementing the continental drift theory of biogeographical movement of ostriches in India, and opening up a new window into the evolutionary history of ratites.

]]>
<![CDATA[High Ancient Genetic Diversity of Human Lice, Pediculus humanus, from Israel Reveals New Insights into the Origin of Clade B Lice]]> https://www.researchpad.co/article/5989dabcab0ee8fa60baf341

The human head louse, Pediculus humanus capitis, is subdivided into several significantly divergent mitochondrial haplogroups, each with particular geographical distributions. Historically, they are among the oldest human parasites, representing an excellent marker for tracking older events in human evolutionary history. In this study, ancient DNA analysis using real-time polymerase chain reaction (qPCR), combined with conventional PCR, was applied to the remains of twenty-four ancient head lice and their eggs from the Roman period which were recovered from Israel. The lice and eggs were found in three combs, one of which was recovered from archaeological excavations in the Hatzeva area of the Judean desert, and two of which found in Moa, in the Arava region, close to the Dead Sea. Results show that the head lice remains dating approximately to 2,000 years old have a cytb haplogroup A, which is worldwide in distribution, and haplogroup B, which has thus far only been found in contemporary lice from America, Europe, Australia and, most recently, Africa. More specifically, this haplogroup B has a B36 haplotype, the most common among B haplogroups, and has been present in America for at least 4,000 years. The present findings confirm that clade B lice existed, at least in the Middle East, prior to contacts between Native Americans and Europeans. These results support a Middle Eastern origin for clade B followed by its introduction into the New World with the early peoples. Lastly, the presence of Acinetobacter baumannii DNA was demonstrated by qPCR and sequencing in four head lice remains belonging to clade A.

]]>
<![CDATA[Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes]]> https://www.researchpad.co/article/5989db0bab0ee8fa60bca196

Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted “bidirectional analysis,” which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples.

]]>
<![CDATA[A Discovered Ducal Seal Does Not Belong to the Incorporation Charter for the City of Krakow Solving the Mystery Using Genetic Methods]]> https://www.researchpad.co/article/5989da72ab0ee8fa60b9539c

The Incorporation Charter for the city of Krakow, the former capital of Poland, is one of the most valuable documents stored in the National Archives in Krakow. The document, which was written in 1257 on parchment, grants Krakow the Magdeburg rights and regulates its legal, statutory, economic and settlement-related aspects. The Charter was placed in the National Register of the Memory of the World UNESCO programme in 2014. A ducal seal, considered to be the lost seal detached from the Incorporation Charter, was found in the sphragistic collection after nearly 500 years. Unfortunately, it was uncertain whether the seal in question was indeed the missing part of the document. The aim of the study presented below was to solve this mystery. For this purpose, the parchment on which the Incorporation Charter was written was compared with the fragment of the parchment attached to the discovered seal. The study involved the analysis of selected mitochondrial DNA sequences and additional analysis at the level of nuclear DNA using microsatellite markers in the form of 11 STR (Short Tandem Repeat) loci, to identify the species and individual whose skin had been used to make the parchment. This analysis revealed that seal and parchment was from different individuals and thereby discovered that the seal was never a part of the Incorporation Charter. The study is further an example of informative DNA preservation in cultural heritage objects.

]]>
<![CDATA[Molecular Paleoparasitological Hybridization Approach as Effective Tool for Diagnosing Human Intestinal Parasites from Scarce Archaeological Remains]]> https://www.researchpad.co/article/5989d9fbab0ee8fa60b71ddf

Paleoparasitology is the science that uses parasitological techniques for diagnosing parasitic diseases in the past. Advances in molecular biology brought new insights into this field allowing the study of archaeological material. However, due to technical limitations a proper diagnosis and confirmation of the presence of parasites is not always possible, especially in scarce and degraded archaeological remains. In this study, we developed a Molecular Paleoparasitological Hybridization (MPH) approach using ancient DNA (aDNA) hybridization to confirm and complement paleoparasitological diagnosis. Eight molecular targets from four helminth parasites were included: Ascaris sp., Trichuris trichiura, Enterobius vermicularis, and Strongyloides stercoralis. The MPH analysis using 18th century human remains from Praça XV cemetery (CPXV), Rio de Janeiro, Brazil, revealed for the first time the presence E. vermicularis aDNA (50%) in archaeological sites of Brazil. Besides, the results confirmed T. trichiura and Ascaris sp. infections. The prevalence of infection by Ascaris sp. and E. vermicularis increased considerably when MPH was applied. However, a lower aDNA detection of T. trichiura (40%) was observed when compared to the diagnosis by paleoparasitological analysis (70%). Therefore, based on these data, we suggest a combination of Paleoparasitological and MPH approaches to verify the real panorama of intestinal parasite infection in human archeological samples.

]]>
<![CDATA[Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc8d1

Large-scale genomic analyses of ancient human populations have become feasible partly due to refined sampling methods. The inner part of petrous bones and the cementum layer in teeth roots are currently recognized as the best substrates for such research. We present a comparative analysis of DNA preservation in these two substrates obtained from the same human skulls, across a range of different ages and preservation environments. Both substrates display significantly higher endogenous DNA content (average of 16.4% and 40.0% for teeth and petrous bones, respectively) than parietal skull bone (average of 2.2%). Despite sample-to-sample variation, petrous bone overall performs better than tooth cementum (p = 0.001). This difference, however, is driven largely by a cluster of viking skeletons from one particular locality, showing relatively poor molecular tooth preservation (<10% endogenous DNA). In the remaining skeletons there is no systematic difference between the two substrates. A crude preservation (good/bad) applied to each sample prior to DNA-extraction predicted the above/below 10% endogenous DNA threshold in 80% of the cases. Interestingly, we observe signficantly higher levels of cytosine to thymine deamination damage and lower proportions of mitochondrial/nuclear DNA in petrous bone compared to tooth cementum. Lastly, we show that petrous bones from ancient cremated individuals contain no measurable levels of authentic human DNA. Based on these findings we discuss the pros and cons of sampling the different elements.

]]>
<![CDATA[Detection of a Tumor Suppressor Gene Variant Predisposing to Colorectal Cancer in an 18th Century Hungarian Mummy]]> https://www.researchpad.co/article/5989d9daab0ee8fa60b67437

Mutations of the Adenomatous polyposis coli (APC) gene are common and strongly associated with the development of colorectal adenomas and carcinomas. While extensively studied in modern populations, reports on visceral tumors in ancient populations are scarce. To the best of our knowledge, genetic characterization of mutations associated with colorectal cancer in ancient specimens has not yet been described. In this study we have sequenced hotspots for mutations in the APC gene isolated from 18th century naturally preserved human Hungarian mummies. While wild type APC sequences were found in two mummies, we discovered the E1317Q missense mutation, known to be a colorectal cancer predisposing mutation, in a large intestine tissue of an 18th century mummy. Our data suggests that this genetic predisposition to cancer already existed in the pre-industrialization era. This study calls for similar investigations of ancient specimens from different periods and geographical locations to be conducted and shared for the purpose of obtaining a larger scale analysis that will shed light on past cancer epidemiology and on cancer evolution.

]]>
<![CDATA[A Molecular Approach to the Sexing of the Triple Burial at the Upper Paleolithic Site of Dolní Věstonice]]> https://www.researchpad.co/article/5989dae4ab0ee8fa60bbcfb1

In the past decades ancient DNA research has brought numerous insights to archaeological research where traditional approaches were limited. The determination of sex in human skeletal remains is often challenging for physical anthropologists when dealing with incomplete, juvenile or pathological specimens. Molecular approaches allow sexing on the basis of sex-specific markers or by calculating the ratio of DNA derived from different chromosomes. Here we propose a novel approach that relies on the ratio of X chromosome-derived shotgun sequencing data to the autosomal coverage, thus establishing the probability of an XX or XY karyotype. Applying this approach to the individuals of the Upper Paleolithic triple burial of Dolní Věstonice reveals that all three skeletons, including the individual DV 15, whose sex has long been debated due to a pathological condition, were male.

]]>
<![CDATA[A European Mitochondrial Haplotype Identified in Ancient Phoenician Remains from Carthage, North Africa]]> https://www.researchpad.co/article/5989d9fcab0ee8fa60b724fe

While Phoenician culture and trade networks had a significant impact on Western civilizations, we know little about the Phoenicians themselves. In 1994, a Punic burial crypt was discovered on Byrsa Hill, near the entry to the National Museum of Carthage in Tunisia. Inside this crypt were the remains of a young man along with a range of burial goods, all dating to the late 6th century BCE. Here we describe the complete mitochondrial genome recovered from the Young Man of Byrsa and identify that he carried a rare European haplogroup, likely linking his maternal ancestry to Phoenician influenced locations somewhere on the North Mediterranean coast, the islands of the Mediterranean or the Iberian Peninsula. This result not only provides the first direct ancient DNA evidence of a Phoenician individual but the earliest evidence of a European mitochondrial haplogroup, U5b2c1, in North Africa.

]]>