ResearchPad - animal-physiology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[The 2015-2016 El Niño increased infection parameters of copepods on Eastern Tropical Pacific dolphinfish populations]]> https://www.researchpad.co/article/elastic_article_7672 The oceanographic conditions of the Pacific Ocean are largely modified by El Niño (EN), affecting several ecological processes. Parasites and other marine organisms respond to environmental variation, but the influence of the EN cycle on the seasonal variation of parasitic copepods has not been yet evaluated. We analysed the relation between infection parameters (prevalence and mean intensity) of the widespread parasitic copepods Caligus bonito and Charopinopsis quaternia in the dolphinfish Coryphaena hippurus and oceanography during the strong 2015–16 EN. Fish were collected from capture fisheries on the Ecuadorian coast (Tropical Eastern Pacific) over a 2-year period. Variations of sea surface temperature (SST), salinity, chlorophyll a (Chl-a), Oceanic Niño Index (ONI), total host length (TL) and monthly infection parameters of both copepod species were analysed using time series and cross-correlations. We used the generalised additive models for determine the relationship between environmental variables and infection parameters. The total body length of the ovigerous females and the length of the eggs of C. bonito were measured in both periods. Infection parameters of both C. bonito and Ch. quaternia showed seasonal and annual patterns associated with the variation of environmental variables examined (SST, salinity, Chl-a and ONI 1+2). Infection parameters of both copepod species were significantly correlated with ONI 1+2, SST, TL and Chl-a throughout the GAMLSS model, and the explained deviance contribution ranged from 16%-36%. Our results suggest than an anomaly higher than +0.5°C triggers a risen in infection parameters of both parasitic copepods. This risen could be related to increases in egg length, female numbers and the total length of the ovigerous females in EN period. This study provides the first evidence showing that tropical parasitic copepods are sensitive to the influence of EN event, especially from SST variations. The observed behaviour of parasitic copepods likely affects the host populations and structure of the marine ecosystem at different scales.

]]>
<![CDATA[Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis]]> https://www.researchpad.co/article/N201121b9-bfe0-423d-91d1-e349ea424365

Assessing the well-being of an animal is hindered by the limitations of efficient communication between humans and animals. Instead of direct communication, a variety of parameters are employed to evaluate the well-being of an animal. Especially in the field of biomedical research, scientifically sound tools to assess pain, suffering, and distress for experimental animals are highly demanded due to ethical and legal reasons. For mice, the most commonly used laboratory animals, a valuable tool is the Mouse Grimace Scale (MGS), a coding system for facial expressions of pain in mice. We aim to develop a fully automated system for the surveillance of post-surgical and post-anesthetic effects in mice. Our work introduces a semi-automated pipeline as a first step towards this goal. A new data set of images of black-furred laboratory mice that were moving freely is used and provided. Images were obtained after anesthesia (with isoflurane or ketamine/xylazine combination) and surgery (castration). We deploy two pre-trained state of the art deep convolutional neural network (CNN) architectures (ResNet50 and InceptionV3) and compare to a third CNN architecture without pre-training. Depending on the particular treatment, we achieve an accuracy of up to 99% for the recognition of the absence or presence of post-surgical and/or post-anesthetic effects on the facial expression.

]]>
<![CDATA[Daily and seasonal fluctuation in Tawny Owl vocalization timing]]> https://www.researchpad.co/article/N7177f503-3b7e-4d4b-a022-d9bd333d526e

A robust adaptation to environmental changes is vital for survival. Almost all living organisms have a circadian timing system that allows adjusting their physiology to cyclic variations in the surrounding environment. Among vertebrates, many birds are also seasonal species, adapting their physiology to annual changes in photoperiod (amplitude, length and duration). Tawny Owls (Strix aluco) are nocturnal birds of prey that use vocalization as their principal mechanism of communication. Diurnal and seasonal changes in vocalization have been described for several vocal species, including songbirds. Comparable studies are lacking for owls. In the present work, we show that male Tawny Owls present a periodic vocalization pattern in the seconds-to-minutes range that is subject to both daily (early vs. late night) and seasonal (spring vs. summer) rhythmicity. These novel theory-generating findings appear to extend the role of the circadian system in regulating temporal events in the seconds-to-minutes range to other species.

]]>
<![CDATA[Increasing sika deer population density may change resource use by larval dung beetles]]> https://www.researchpad.co/article/N8cd3ee58-c057-4e17-9e0d-6a1ba00b0cfd

Because animal feces contain organic matter and plant seeds, dung beetles (Scarabaeinae) are important for the circulation of materials and secondary seed dispersal through burying feces. Dung beetles are usually generalists and use the feces of various mammals. Additionally, the larval stages have access to feces from only one mammal species leaving them susceptible to changes in animal fauna and variations in animal populations. Here, we explain the effects of resource availability changes associated with sika deer (Cervus nippon) overabundance on dung beetle larvae feeding habits in Japan. δ15N values were notably higher in raccoon dog and badger dung than in that of other mammals. A dung beetle breeding experiment revealed that the δ15N values of dung beetle exoskeletons that had fed on deer feces during their larval stage were significantly lower than those of beetles that had fed on raccoon dog feces. The δ15N values of the adult exoskeleton were significantly lower in a deer high-density area than in a low-density area in large dung beetles only. It is possible that the high-quality feces, such as those of omnivores, preferred by the large beetles decrease in availability with an increase in deer dung; large beetles may therefore be unable to obtain sufficient high-quality feces and resort to using large amounts of low-quality deer feces. Small dung beetles may use the easily obtained feces that is in high abundance and they may also use deer feces more frequently with increases in deer density. These findings suggest that a larval resource shift associated with deer overabundance may affect ecosystem functions such as soil nutrient cycling and seed dispersal.

]]>
<![CDATA[Bilateral Parkinson’s disease model rats exhibit hyperalgesia to subcutaneous formalin administration into the vibrissa pad]]> https://www.researchpad.co/article/Nc1e56242-0f9e-4dec-b14c-0acf3482ec2d

We bilaterally injected 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle of rats and developed bilateral Parkinson’s disease (PD) model rats in order to experimentally investigate the neural mechanisms underlying the alteration of nociception in the orofacial region of patients with PD. We explored the effects of dopamine depletion on nociception by investigating behavioral responses (face rubbing) triggered by subcutaneous administration of formalin into the vibrissa pad. We also assessed the number of c-Fos–immunoreactive (c-Fos-IR) cells in the superficial layers of the trigeminal spinal subnucleus caudalis (Vc). Subcutaneous formalin administration evoked a two-phase increase in face rubbing. We observed the first increase 0–5 min after formalin administration (first phase) and the second increase 10–60 min after administration (second phase). The number of face rubbing behaviors of 6OHDA–injected rats did not significantly change compared with saline–injected rats in both phases. Significant increase of c-Fos-IR cells in the Vc was found in 6-OHDA–injected rats after formalin administration compared with those in saline–injected rats after formalin administration. We also assessed expression of c-Fos-IR cells in the paraventricular nucleus (PVN), and significant decrease of c-Fos-IR cells in the PVN of 6-OHDA–injected rats was found. Taken together, these findings suggest that bilateral dopaminergic denervation evoked by 6-OHDA administration causes hyperalgesia in the trigeminal region and the PVN may be involved in the hyperalgesia.

]]>
<![CDATA[Temperature preference of Nile tilapia (Oreochromis niloticus) juveniles induces spontaneous sex reversal]]> https://www.researchpad.co/article/5c6f14fcd5eed0c48467ac14

Nile tilapia (Oreochromis niloticus) is an African freshwater fish that displays a genetic sex determination system (XX|XY) where high temperatures (above 32°C to 36.5°C) induce masculinization. In Nile tilapia, the thermosensitive period was reported from 10 to 30 days post fertilization. In their natural environment, juveniles may encounter high temperatures that are above the optimal temperature for growth (27–30°C). The relevance of the thermal sex reversal mechanism in a natural context remains unclear. The main objective of our study is to determine whether sexually undifferentiated juveniles spontaneously prefer higher, unfavorable temperatures and whether this choice skews the sex ratio toward males. Five full-sib progenies (from 100% XX crosses) were subjected to (1) a horizontal three-compartment thermal step gradient (thermal continuum 28°C– 32°C– 36.5°C) during the thermosensitive period, (2) a control continuum (28°C– 28°C– 28°C) and (3) a thermal control tank (36.5°C). During the first days of the treatment, up to an average of 20% of the population preferred the masculinizing compartment of the thermal continuum (36.5°C) compared to the control continuum. During the second part of the treatment, juveniles preferred the lower, nonmasculinizing 32°C temperature. This short exposure to higher temperatures was sufficient to significantly skew the sex ratio toward males, compared to congeners raised at 28°C (from 5.0 ± 6.7% to 15.6 ± 16.5% of males). The proportion of males was significantly different in the thermal continuum, thermal control tank and control continuum, and it was positively correlated among populations. Our study shows for the first time that Nile tilapia juveniles can choose a masculinizing temperature during a short period of time. This preference is sufficient to induce sex reversal to males within a population. For the first time, behavior is reported as a potential player in the sex determination mechanism of this species.

]]>
<![CDATA[Breeding behavior in the blind Mexican cavefish and its river-dwelling conspecific]]> https://www.researchpad.co/article/5c76fe22d5eed0c484e5b593

Fish reproductive patterns are very diverse in terms of breeding frequency, mating system, sexual dimorphisms and selection, mate choice, spawning site choice, courtship patterns, spawning behaviors and parental care. Here we have compared the breeding behavior of the surface-dwelling and cave-dwelling morphs of the characiform A. mexicanus, with the goals of documenting the spawning behavior in this emerging model organism, its possible evolution after cave colonization, and the sensory modalities involved. Using infrared video recordings, we showed that cave and surface Astyanax spawning behavior is identical, occurs in the dark, and can be divided into 5 rapid phases repeated many times, about once per minute, during spawning sessions which last about one hour and involve one female and several males. Such features may constitute “pre-adaptive traits” which have facilitated fish survival after cave colonization, and may also explain how the two morphs can hybridize in the wild and in the laboratory. Accordingly, cross-breeding experiments involving females of one morphotype and males of the other morphotype showed the same behavior including the same five phases. However, breeding between cavefish females and surface fish males was more frequent than the reverse. Finally, cavefish female pheromonal solution was able to trigger strong behavioral responses in cavefish males–but not on surface fish males. Lastly, egg production seemed higher in surface fish females than in cavefish females. These results are discussed with regards to the sensory modalities involved in triggering reproductive behavior in the two morphs, as well as its possible ongoing evolution.

]]>
<![CDATA[A novel nonosteocytic regulatory mechanism of bone modeling]]> https://www.researchpad.co/article/5c5df343d5eed0c484581048

Osteocytes, cells forming an elaborate network within the bones of most vertebrate taxa, are thought to be the master regulators of bone modeling, a process of coordinated, local bone-tissue deposition and removal that keeps bone strains at safe levels throughout life. Neoteleost fish, however, lack osteocytes and yet are known to be capable of bone modeling, although no osteocyte-independent modeling regulatory mechanism has so far been described. Here, we characterize a novel, to our knowledge, bone-modeling regulatory mechanism in a fish species (medaka), showing that although lacking osteocytes (i.e., internal mechanosensors), when loaded, medaka bones model in mechanically directed ways, successfully reducing high tissue strains. We establish that as in mammals, modeling in medaka is regulated by the SOST gene, demonstrating a mechanistic link between skeletal loading, SOST down-regulation, and intense bone deposition. However, whereas mammalian SOST is expressed almost exclusively by osteocytes, in both medaka and zebrafish (a species with osteocytic bones), SOST is expressed by a variety of nonosteocytic cells, none of which reside within the bone bulk. These findings argue that in fishes (and perhaps other vertebrates), nonosteocytic skeletal cells are both sensors and responders, shouldering duties believed exclusive to osteocytes. This previously unrecognized, SOST-dependent, osteocyte-independent mechanism challenges current paradigms of osteocyte exclusivity in bone-modeling regulation, suggesting the existence of multivariate feedback networks in bone modeling—perhaps also in mammalian bones—and thus arguing for the possibility of untapped potential for cell targets in bone therapeutics.

]]>
<![CDATA[Anaesthetic efficacy of Aqui-S, Benzoak, and MS-222 on lumpfish (Cyclopterus lumpus) fries. Impact from temperature, salinity, and fasting]]> https://www.researchpad.co/article/5c50c45bd5eed0c4845e8624

Large numbers of lumpfish are produced for the Norwegian salmon industry and are used to combat sea lice infestations. Periodically high mortality of farmed lumpfish demonstrates the need to improve farming conditions and animal welfare. As part of such efforts, the present work tested the efficacy of three anaesthetic chemicals on lumpfish fries (average weight of 0.97 g). The anaesthetic impact from salinity (15 ppt–18 ppt), temperature (12°C versus 7 and 18°C), and fasting conditions (three days) was also examined. Surgical anaesthesia was induced within 3 to 5 min (preferred time) at concentrations of 18 mg/L (Aqui-S), 37.5 mg/L (Benzoak), and 60 mg/L (buffered MS-222). Safety margins were regarded as low when using Aqui-S; therefore, this chemical was not considered suitable for prolonged exposures. The lumpfish made a rapid recovery from both Benzoak and MS-222 even after 20 min of exposure. A 6°C increase in exposure temperature (reaching 18°C) was found to delay or inhibit recovery. The effect of a 5°C decrease (down to 7°C) significantly reduced induction time for MS-222 and was insignificant for Aqui-S, while it prolonged Benzoak induction time significantly and gave a longer recovery period. Fasting resulted in 70% recovery after 20 min of Aqui-S exposure compared to 0% in fed fish but had only minor effects on Benzoak and MS-222. Use of brackish water (15 ppt–18 ppt) gave 20% recovery from Aqui-S and significantly shorter recovery time from MS-222 exposure, while the effects on Benzoak were insignificant.

]]>
<![CDATA[Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures]]> https://www.researchpad.co/article/5c5217cdd5eed0c4847945e9

Hydropeaking is the rapid change in the water flow downstream of a hydropower plant, driven by changes in daily electricity demand. These fluctuations may produce negative effects in freshwater fish. To minimize these impacts, previous studies have proposed habitat enhancement structures as potential mitigation measures for salmonids. However, the recommendation of these mitigation measures for cyprinids remains scarce and their effects unknown. In this study, the effects of potential habitat mitigation structures under simulated hydropeaking and base-flow conditions are examined for Iberian barbel (Luciobarbus bocagei) in an indoor flume. Solid triangular pyramids and v-shaped structures were evaluated as potential flow-refuging areas and compared with a configuration without structures. A novel, interdisciplinary approach is applied to investigate individual and group responses to rapidly changing flows, by assessing physiological (glucose and lactate), movement behaviour (structure use, sprints and drifts) and the pressure distribution using a fish-inspired artificial lateral line flow sensor. The major findings of this study are four-fold: 1) Under hydropeaking conditions, the v-shaped structures triggered a lactate response and stimulated individual structure use, whereas solid structures did not elicit physiological adjustments and favoured individual and group structure use. Overall, both solid structures and their absence stimulated sprints and drifts. 2) The hydrodynamic conditions created in hydropeaking did not always reflect increased physiological responses or swimming activity. 3) Each event-structure combination resulted in unique hydrodynamic conditions which were reflected in the different fish responses. 4) The most relevant flow variable measured was the pressure asymmetry, which is caused by the vortex size and shedding frequency of the structures. Considering the non-uniform nature of hydropeaking events, and the observation that the fish responded differently to specific flow event-structure combinations, a diverse set of instream structures should be considered for habitat-based hydropeaking mitigation measures for Iberian barbel.

]]>
<![CDATA[Drosophila melanogaster cloak their eggs with pheromones, which prevents cannibalism]]> https://www.researchpad.co/article/5c40f80bd5eed0c484386efb

Oviparous animals across many taxa have evolved diverse strategies that deter egg predation, providing valuable tests of how natural selection mitigates direct fitness loss. Communal egg laying in nonsocial species minimizes egg predation. However, in cannibalistic species, this very behavior facilitates egg predation by conspecifics (cannibalism). Similarly, toxins and aposematic signaling that deter egg predators are often inefficient against resistant conspecifics. Egg cannibalism can be adaptive, wherein cannibals may benefit through reduced competition and added nutrition, but since it reduces Darwinian fitness, the evolution of anticannibalistic strategies is rife. However, such strategies are likely to be nontoxic because deploying toxins against related individuals would reduce inclusive fitness. Here, we report how D. melanogaster use specific hydrocarbons to chemically mask their eggs from cannibal larvae. Using an integrative approach combining behavioral, sensory, and mass spectrometry methods, we demonstrate that maternally provisioned pheromone 7,11-heptacosadiene (7,11-HD) in the eggshell’s wax layer deters egg cannibalism. Furthermore, we show that 7,11-HD is nontoxic, can mask underlying substrates (for example, yeast) when coated upon them, and its detection requires pickpocket 23 (ppk23) gene function. Finally, using light and electron microscopy, we demonstrate how maternal pheromones leak-proof the egg, consequently concealing it from conspecific larvae. Our data suggest that semiochemicals possibly subserve in deceptive functions across taxa, especially when predators rely on chemical cues to forage, and stimulate further research on deceptive strategies mediated through nonvisual sensory modules. This study thus highlights how integrative approaches can illuminate our understanding on the adaptive significance of deceptive defenses and the mechanisms through which they operate.

]]>
<![CDATA[Environmental complexity: A buffer against stress in the domestic chick]]> https://www.researchpad.co/article/5c466559d5eed0c484518bb5

Birds kept in commercial production systems can be exposed to multiple stressors from early life and this alters the development of different morphological, immunological and behavioural indicators. We explore the hypothesis that provision of a complex environment during early life, better prepares birds to cope with stressful events as well as buffers them against future unpredictable stressful episodes. In this study, 96 one day old pullets were randomly distributed in eight pens (12 birds/pen). Half of the chicks (N = 48) were assigned to a Complex Environment (CENV: with perches, a dark brooder etc.) the others to a Simple Environment (SENV: without enrichment features). Half of the birds from each of these treatments were assigned to a No Stress (NSTR, 33°C) or to an acute Cold Stress (CSTR, 18–20°C) treatment during six hours on their second day of life. At four weeks of age, chicks with these four different backgrounds were exposed to an Intermittent Stressful Challenges Protocol (ISCP). In an immunological test indicative of pro-inflammatory status Phytohemagglutinin-P (PHA-P), the response of CSTR birds was ameliorated by rearing chicks in a CENV as they had a similar response to NSTR chicks and a significantly better pro-inflammatory response than those CSTR birds reared in a SENV (five days after the CSTR treatment was applied). A similar better response when coping with new challenges (the ISCP) was observed in birds reared in a CENV compared to those from a SENV. Birds reared in the CENV had a lower heterophil/lymphocyte ratio after the ISCP than birds reared in SENV, independently of whether or not they had been exposed to CSTR early in life. No effects of stress on general behaviour were detected, however, the provision of a CENV increased resting behaviour, which may have favoured stress recover. Additionally, we found that exposure to cold stress at an early age might have rendered birds more vulnerable to future stressful events. CSTR birds had lower humoral immune responses (sheep red blood cells induced antibodies) after the ISCP and started using elevated structures in the CENV later compared to their NSTR conspecifics. Our study reflects the importance of the early provision of a CENV in commercial conditions to reduce negative stress-related effects. Within the context of the theory of adaptive plasticity, our results suggest that the early experience of the birds had long lasting effects on the modulation of their phenotypes.

]]>
<![CDATA[Basic knowledge of social hierarchies and physiological profile of reared sea bass Dicentrarchus labrax (L.)]]> https://www.researchpad.co/article/5c3fa5d2d5eed0c484ca8fd2

The effects of social hierarchies (dominant/subordinate individuals), such as aggressiveness, feeding order, and territoriality, are some of the characteristics used for describing fish behaviour. Social hierarchy patterns are still poorly understood in European-reared sea bass (Dicentrarchus labrax). In this work, we examine the social interactions among captive fish integrating behavioural and physiological profiles. Groups of three fish with EMG (electromyogram) radio transmitters were monitored for two weeks via video recording. Plasma levels of cortisol, glucose, lactate and lysozyme as well as haematological parameters such as haemoglobin, haematocrit and RBCC (red blood cell count) were measured at the beginning and end of the experiments. Behaviour and muscle activity were monitored daily. The results highlighted that the social hierarchic order was established after one to two days, and it was maintained throughout the experimental period. Dominant and subordinate fish (ß and γ) showed significant differences in muscle activity, hormonal profile (cortisol), aspecific immunity (lysozyme), carbohydrate metabolism (lactate) and behavioural patterns (food order and aggressiveness). This holistic approach helps to provide insights into the physiological status of the subordinate (ß and γ) and dominant individuals. These data have wide implications for aquaculture practice.

]]>
<![CDATA[Coral-dwelling fish moderate bleaching susceptibility of coral hosts]]> https://www.researchpad.co/article/5c1d5bd2d5eed0c4846ecafb

Global environmental change has the potential to disrupt well established species interactions, with impacts on nutrient cycling and ecosystem function. On coral reefs, fish living within the branches of coral colonies can promote coral performance, and it has been hypothesized that the enhanced water flow and nutrients provided by fish to corals could ameliorate coral bleaching. The aim of this study was to evaluate the influence of small, aggregating damselfish on the health of their host corals (physiology, recovery, and survival) before, during, and after a thermal-bleaching event. When comparing coral colonies with and without fish, those with resident fish exhibited higher Symbiodinium densities and chlorophyll in both field and experimentally-induced bleaching conditions, and higher protein concentrations in field colonies. Additionally, colonies with damselfish in aquaria exhibited both higher photosynthetic efficiency (FV/FM) during bleaching stress and post-bleaching recovery, compared to uninhabited colonies. These results demonstrate that symbiotic damselfishes, and the services they provide, translate into measureable impacts on coral tissue, and can influence coral bleaching susceptibility/resilience and recovery. By mediating how external abiotic stressors influence coral colony health, damselfish can affect the functional responses of these interspecific interactions in a warming ocean.

]]>
<![CDATA[Largescale mullet (Planiliza macrolepis) can recover from thermal pollution-induced malformations]]> https://www.researchpad.co/article/5c0993d3d5eed0c4842ada20

It is well known in aquaculture that hyperthermic perturbations may cause skeleton malformations in fish, but this phenomenon has rarely been documented in wild species. One rare location where thermal pollution has increased the proportion of malformed fish in wild population is in the waters near the Kuosheng Nuclear Power Plant in Taiwan. At this site, the threshold temperature and critical exposure time for inducing deformations have not been previously determined. In addition, it was unclear whether juvenile fish with thermal-induced malformations are able to recover when the temperature returns below the threshold. In the present study, juvenile largescale mullet (Planiliza macrolepis) were kept at temperatures ranging from 26°C and 36°C for 1–4 weeks, after which malformed fish were maintained at a preferred temperature of 26°C for another 8 weeks. The vertebrae bending index (VBI) of fish was increased after 2 weeks at 36°C, and deformed vertebral columns were detected by radiography after 4 weeks. However, malformations were not observed in groups kept at or below 34°C. Moreover, at the end of the recovery period, both the VBI and the vertebrae malformations had returned to normal. The results of this study may help to more precisely determine potential environmental impacts of thermal pollution and raise the possibility that the capacity for fish vertebrae to recover from the impacts of chronic thermal exposures may be an important consideration in marine fish conservation.

]]>
<![CDATA[Study of the ichthyotoxic microalga Heterosigma akashiwo by transcriptional activation of sublethal marker Hsp70b in Transwell co-culture assays]]> https://www.researchpad.co/article/5b6da1a5463d7e4dccc5fae5

Despite the advance of knowledge about the factors and potential mechanisms triggering the ichthyotoxicity in microalgae, these remain unclear or are controversial for several species (e.g. Heterosigma). Neither typical toxicity tests carried out with cell extracts nor direct exposure to harmful species were proved suitable to unravel the mechanism of harm. Ichthyotoxic species show a complex harmful effect on fish, which is mediated through various mechanisms depending on the species. In this work, we present a method to study sub-lethal effects triggered by reactive oxygen species of a population of harmful algae in vivo over a fish cell line. To that end, Transwell co-cultures in which causative and target species are separated by a 0.4 μm pore membrane were carried out. This allowed the evaluation of the effect of the released molecules by cells in a rapid and compact test. In our method, the harmful effect was sensed through the transcriptional activation of sub-lethal marker Hsp70b in the CHSE214 salmon cell line. The method was tested with the raphidophyte Heterosigma akashiwo and Dunaliella tertiolecta (as negative control). It was shown that superoxide intracellular content and its release are not linked in these species. The methodology allowed proving that reactive oxygen species produced by H. akashiwo are able to induce the transcriptional activation of sub-lethal marker Hsp70b. However, neither loss of viability nor apoptosis was observed in CHSE214 salmon cell line except when exposed to direct contact with the raphidophyte cells (or their extract). Consequently, ROS was not concluded to be the main cause of ichthyotoxicity in H. akashiwo.

]]>
<![CDATA[Aquaporins Are Critical for Provision of Water during Lactation and Intrauterine Progeny Hydration to Maintain Tsetse Fly Reproductive Success]]> https://www.researchpad.co/article/5989d9e7ab0ee8fa60b6b92f

Tsetse flies undergo drastic fluctuations in their water content throughout their adult life history due to events such as blood feeding, dehydration and lactation, an essential feature of the viviparous reproductive biology of tsetse. Aquaporins (AQPs) are transmembrane proteins that allow water and other solutes to permeate through cellular membranes. Here we identify tsetse aquaporin (AQP) genes, examine their expression patterns under different physiological conditions (blood feeding, lactation and stress response) and perform functional analysis of three specific genes utilizing RNA interference (RNAi) gene silencing. Ten putative aquaporins were identified in the Glossina morsitans morsitans (Gmm) genome, two more than has been previously documented in any other insect. All organs, tissues, and body parts examined had distinct AQP expression patterns. Two AQP genes, gmmdripa and gmmdripb ( = gmmaqp1a and gmmaqp1b) are highly expressed in the milk gland/fat body tissues. The whole-body transcript levels of these two genes vary over the course of pregnancy. A set of three AQPs (gmmaqp5, gmmaqp2a, and gmmaqp4b) are expressed highly in the Malpighian tubules. Knockdown of gmmdripa and gmmdripb reduced the efficiency of water loss following a blood meal, increased dehydration tolerance and reduced heat tolerance of adult females. Knockdown of gmmdripa extended pregnancy length, and gmmdripb knockdown resulted in extended pregnancy duration and reduced progeny production. We found that knockdown of AQPs increased tsetse milk osmolality and reduced the water content in developing larva. Combined knockdown of gmmdripa, gmmdripb and gmmaqp5 extended pregnancy by 4–6 d, reduced pupal production by nearly 50%, increased milk osmolality by 20–25% and led to dehydration of feeding larvae. Based on these results, we conclude that gmmDripA and gmmDripB are critical for diuresis, stress tolerance and intrauterine lactation through the regulation of water and/or other uncharged solutes.

]]>
<![CDATA[Growth Pattern Responses to Photoperiod across Latitudes in a Northern Damselfly]]> https://www.researchpad.co/article/5989db3bab0ee8fa60bd4e75

Background

Latitudinal clines in temperature and seasonality impose strong seasonal constraints on ectotherms. Studies of population differentiation in phenotypic plasticity of life history traits along latitudinal gradients are important for understanding how organisms have adapted to seasonal environments and predict how they respond to climate changes. Such studies have been scarce for species with a northern distribution.

Methodology/Principle Finding

Larvae of the northern damselfly Coenagrion johanssoni originating from semivoltine central, partivoltine northern, and partivoltine northernmost Swedish populations were reared in the laboratory. To investigate whether larvae use photoperiodic cues to induce compensatory growth along this latitudinal gradient, larvae were reared under two different photoperiods corresponding to a northern and southern latitude. In addition, field adult size was assessed to test the strength of possible compensatory growth mechanisms under natural conditions and hatchling size was measured to test for maternal effects. We hypothesized that populations originating from lower latitudes would be more time constrained than high-latitude populations because they have a shorter life cycle. The results showed that low-latitude populations had higher growth rates in summer/fall. In general northern photoperiods induced higher growth rates, but this plastic response to photoperiod was strongest in the southernmost populations and negligible in the northernmost population. During spring, central populations grew faster under the southern rather than the northern photoperiod. On the other hand, northern and northernmost populations did not differ between each other and grew faster in the northern rather than in the southern photoperiod. Field sampled adults did not differ in size across the studied regions.

Conclusion/Significance

We found a significant differentiation in growth rate across latitudes and latitudinal difference in growth rate response to photoperiod. Importantly, growth responses measured at a single larval developmental stage in one season may not always generalize to other developmental stages or seasons.

]]>
<![CDATA[Cardiac Atrial Circadian Rhythms in PERIOD2::LUCIFERASE and per1:luc Mice: Amplitude and Phase Responses to Glucocorticoid Signaling and Medium Treatment]]> https://www.researchpad.co/article/5989da89ab0ee8fa60b9d4a3

Circadian rhythms in cardiac function are apparent in e.g., blood pressure, heart rate, and acute adverse cardiac events. A circadian clock in heart tissue has been identified, but entrainment pathways of this clock are still unclear. We cultured tissues of mice carrying bioluminescence reporters of the core clock genes, period 1 or 2 (per1luc or PER2LUC) and compared in vitro responses of atrium to treatment with medium and a synthetic glucocorticoid (dexamethasone [DEX]) to that of the suprachiasmatic nucleus (SCN) and liver. We observed that PER2LUC, but not per1luc is rhythmic in atrial tissue, while both per1luc and PER2LUC exhibit rhythmicity in other cultured tissues. In contrast to the SCN and liver, both per1luc and PER2LUC bioluminescence amplitudes were increased in response to DEX treatment, and the PER2LUC amplitude response was dependent on the time of treatment. Large phase-shift responses to both medium and DEX treatments were observed in the atrium, and phase responses to medium treatment were not attributed to serum content but the treatment procedure itself. The phase-response curves of atrium to both DEX and medium treatments were found to be different to the liver. Moreover, the time of day of the culturing procedure itself influenced the phase of the circadian clock in each of the cultured tissues, but the magnitude of this response was uniquely large in atrial tissue. The current data describe novel entrainment signals for the atrial circadian clock and specifically highlight entrainment by mechanical treatment, an intriguing observation considering the mechanical nature of cardiac tissue.

]]>
<![CDATA[The Comparison between Circadian Oscillators in Mouse Liver and Pituitary Gland Reveals Different Integration of Feeding and Light Schedules]]> https://www.researchpad.co/article/5989dac3ab0ee8fa60bb1741

The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues.

]]>