ResearchPad - animal-study https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Differential Metabolic Pathways and Metabolites in a C57BL/6J Mouse Model of Alcoholic Liver Disease]]> https://www.researchpad.co/article/elastic_article_11865 Alcoholic liver disease (ALD), an important cause of acute or chronic liver injury, results from binge drinking or long-term alcohol consumption. To date, there is no well-established mouse model with a comprehensive metabolic profile that mimics ALD in humans. This study aimed to explore the differential metabolic pathways and related differential metabolites in the liver of an ALD mouse model.Material/MethodsA C57BL/6J mouse model of ALD was induced by alcohol feeding for 10 days plus binge alcohol feeding. The metabolomic profiles in the liver of the ALD mouse model was detected through ultra-high-pressure liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS).ResultsA total 35 metabolites were significantly altered during the development of ALD. These metabolites were correlated to multiple metabolic pathways, including purine metabolism, the pentose phosphate pathway, cysteine and methionine metabolism, D-glutamine and D-glutamate metabolism, pyrimidine metabolism, and vitamin B6 metabolism.ConclusionsThe findings of the present study reveal potential biomarkers of ALD, and provide further insights into the pathogenesis of ALD. ]]> <![CDATA[Carbon Monoxide Inhibits the Expression of Proteins Associated with Intestinal Mucosal Pyroptosis in a Rat Model of Sepsis Induced by Cecal Ligation and Puncture]]> https://www.researchpad.co/article/N45a3295b-c88a-481d-9162-637b4aa1fed1 Carbon monoxide (CO) has anti-inflammatory effects and protects the intestinal mucosal barrier in sepsis. Pyroptosis, or cell death associated with sepsis, is mediated by caspase-1 activation. This study aimed to investigate the role of CO on the expression of proteins associated with intestinal mucosal pyroptosis in a rat model of sepsis induced by cecal ligation and puncture (CLP).Material/MethodsThe rat model of sepsis was developed using CLP. Male Sprague-Dawley rats (n=120) were divided into six study groups: the sham group (n=20); the CLP group (n=20); the hemin group (treated with ferric chloride and heme) (n=20); the zinc protoporphyrin IX (ZnPPIX) group (n=20); the CO-releasing molecule 2 (CORM-2) group (n=20); and the inactive CORM-2 (iCORM-2) group (n=20). Hemin and CORM-2 were CO donors, and ZnPPIX was a CO inhibitor. In the six groups, the seven-day survival curves, the fluorescein isothiocyanate (FITC)-labeled dextran 4000 Da (FD-4) permeability assay, levels of intestinal pyroptosis proteins caspase-1, caspase-11, and gasdermin D (GSDMD) were measured by confocal fluorescence microscopy. Proinflammatory cytokines interleukin (IL)-18, IL-1β, and high mobility group box protein 1 (HMGB1) were measured by Western blot and enzyme-linked immunosorbent assay (ELISA).ResultsCO reduced the mortality rate in rats with sepsis and reduced intestinal mucosal permeability and mucosal damage. CO also reduced the expression levels of IL-18, IL-1β, and HMGB1, and reduced pyroptosis by preventing the cleavage of caspase-1 and caspase-11.ConclusionsIn a rat model of sepsis induced by CLP, CO had a protective role by inhibiting intestinal mucosal pyroptosis. ]]> <![CDATA[A Mouse Model of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Induced Parkinson Disease Shows that 2-Aminoquinoline Targets JNK Phosphorylation]]> https://www.researchpad.co/article/Nc9add8fb-c001-4add-ae45-0def685b8283 The pathological features of Parkinson disease (PD) include motor deficits, glial cell activation, and neuroinflammation. The neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has an oxidation product, 1-methyl-4-phenylpyridinium ion (MPP+). This study aimed to investigate the effects of 2-aminoquinoline on motor deficits in a mouse model of MPTP-induced PD and cultured mouse astrocytes treated with MPP+, to determine the effects on astrocyte proliferation and apoptosis.Material/MethodsMotor deficits in the mouse model of MPTP-induced PD were investigated using the climbing time, suspension time, and swim time tests. Cultured mouse astrocytes were treated with MPP+, and mice with MPTP-induced PD were treated with increasing doses of 2-aminoquinoline. The MTT assay was used to measure astrocyte viability. Astrocyte apoptosis was assessed by confocal fluorescence microscopy using Annexin-V and fluorescein isothiocyanate (FITC) staining. Western blot measured the levels of Bax, p-JNK, Bcl-2, and caspase-3.ResultsIn the mouse model of MPTP-induced PD, motor deficit tests showed that 2-aminoquinoline reduced the impaired motor function during the climbing time, the suspension time, and the swim time tests in a dose-dependent manner. Pre-treatment with 2-aminoquinoline significantly reduced the proliferation and apoptosis of astrocytes induced by MPP+ in vitro, in a dose-dependent manner (P<0.05). The levels of p-JNK and cleaved caspase-3 levels were significantly reduced in astrocytes treated with MPP+ following pre-treatment with 2-aminoquinoline, which also reversed the increase in the Bax/Bcl-2 ratio.ConclusionsIn the mouse model of MPTP-induced PD, 2-aminoquinoline reduced motor deficiencies, inhibited MPP+ activated astrocyte apoptosis, and regulated the Bax/Bcl-2 ratio by targeting p-JNK. ]]> <![CDATA[Icariin Promotes Fracture Healing in Ovariectomized Rats]]> https://www.researchpad.co/article/N4351fadc-e7eb-4a9e-99c1-4187006e1c0c Osteoporotic fractures are common in postmenopausal women and associated with complications. Numerous studies have demonstrated that icariin can be used to treat fractures and osteoporosis. Herein, we evaluated the efficacy of gavage-administered icariin to promote fracture healing in postmenopausal osteoporotic fracture (POF) rats.Material/MethodsIn this study, ovariectomy-induced POF rats were treated with 600 mg/kg icariin. Micro-computed tomography (micro-CT) was used to assess fracture healing; besides, serum APK, TRACP-5b, and E2 expression levels were detected by commercial kits, and the uterine index was calculated. In addition, the expression of osteogenesis-related proteins (Runx 2 and COL1A2) in the callus was measured by western blot, whereas the expression of OPG/RANKL pathway proteins was measured by western blot and immunohistochemical analysis.ResultsOur data revealed that icariin promoted the expression level of Runx 2 and COL1A2 and suppressed the expression level of serum bone turn over biomarkers via the OPG/RANKL pathway. Besides, a more mature callus was observed in the POF rats receiving icariin than in the untreated POF rats, while serum E2 and uterine index were unaffected by icariin treatment.ConclusionsThese results revealed that icariin could promote fracture healing in ovariectomized rats via OPG/RANKL signaling, and that serum E2 and uterine index were not affected by icariin treatment. ]]> <![CDATA[Apoptosis Activation in Thyroid Cancer Cells by Jatrorrhizine-Platinum(II) Complex via Downregulation of PI3K/AKT/Mammalian Target of Rapamycin (mTOR) Pathway]]> https://www.researchpad.co/article/Ndac26444-b8bd-4efb-b637-27f6f3f51a6d Thyroid cancer, which is the most common endocrine cancer, has shown a drastic increase in incidence globally over the past decade. The present study investigated the thyroid cancer-inhibitory potential of jatrorrhizine-platinum(II) complex (JR-P(II) in vitro and in vivo.Material/MethodsThe JR-P(II)-mediated cytotoxicity in thyroid carcinoma cells was determined by using MTT assay. Assessment of acetylated histones, tubulin, and DNA repair proteins was made by Western blot assays. Flow cytometry was used for apoptosis and ROS accumulation measurement.ResultsThe JR-P(II) suppressed proliferative capacity of SW1736, BHP7-13, and 8305C cells. JR-P(II) treatment markedly promoted expression of acetylated histone H3, H4, and tubulin in a dose-dependent manner. Treatment with JR-P(II) significantly elevated the proportion of cells in sub-G1 and promoted cleaved caspase-3 and -9. In JR-P(II)-treated cells, DCFH-DA fluorescence was much higher relative to control cells. The JR-P(II) treatment consistently suppressed expression of pS6, p-ERK1/2, p-4E-BP1, and p-AKT, and increased p-H2AX expression and suppressed KU70 and KU80 protein levels. The level of RAD51 was repressed in JR-P(II)-treated cells. JR-P(II) administration in mice caused no significant change in body weight, and it inhibited SW1736 tumor growth in mice.ConclusionsThe JR-P(II) induced cytotoxicity in thyroid cancer cells by inhibiting the mechanism responsible for repair of double-stranded DNA. The in vivo data also revealed that JR-P(II) effectively inhibits thyroid tumor growth by inducing DNA damage. Thus, our results suggest that further evaluation of JR-P(II) as a therapeutic candidate for thyroid cancer is warranted. ]]> <![CDATA[The Antithrombotic Effects of Low Molecular Weight Fragment from Enzymatically Modified of Laminaria Japonica Polysaccharide]]> https://www.researchpad.co/article/N45b1e19b-6046-4079-9b2d-967803460c8b Laminaria japonica polysaccharide (LJP), a fucose enriched sulfated polysaccharide has been demonstrated to have excellent anticoagulant and antithrombotic activities. However, the antithrombotic effect of low molecular weight polysaccharide from enzymatically modified of LJP (LMWEP) remains unknown.Material/MethodsLMWEP was prepared by fucoidanase enzymatic hydrolysis, and the antithrombotic and anticoagulant activities, and the underlying mechanism were investigated thoroughly. Rats were randomly divided into 6 groups (8 rats in each group): the blank control group, the blank control group treated with LMWEP (20 mg/kg), the model group, the model group treated with heparin (2 mg/kg), the model group treated with LJP (20 mg/kg), and the model group treated with LMWEP (20 mg/kg). After 7 days of intravenous administration, blood was collected for biochemical parameters examinations.ResultsLMWEP increased the activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), 6-keto prostaglandin F1α (6-Keto-PGF1α), and endothelial nitric oxide synthase (eNOS). In addition, LMWEP decreased fibrinogen (FIB), endothelin-1 (ET-1), thromboxane B2 (TXB2), erythrocyte sedimentation rate (ESR), and hematocrit (HCT).ConclusionsLMWEP, an enzymatically modified fragment with a molecular weight of 25.8 kDa, is a potential antithrombotic candidate for treatment of thrombosis related diseases. ]]> <![CDATA[The Effects of Inhibition of MicroRNA-375 in a Mouse Model of Doxorubicin-Induced Cardiac Toxicity]]> https://www.researchpad.co/article/N3ad2cde5-7c38-40a9-b420-9788b680f9b8

Background

Doxorubicin-induced myocardial toxicity is associated with oxidative stress, cardiomyocyte, apoptosis, and loss of contractile function. Previous studies showed that microRNA-375 (miR-375) expression was increased in mouse models of heart failure and clinically, and that inhibition of miR-375 reduced inflammation and increased survival of cardiomyocytes. This study aimed to investigate the effects and mechanisms of inhibition of miR-375 in a mouse model of doxorubicin-induced cardiac toxicity in vivo and in doxorubicin-treated rat and mouse cardiomyocytes in vitro.

Material/Methods

The mouse model of doxorubicin-induced cardiac toxicity was developed using an intraperitoneal injection of doxorubicin (15 mg/kg diluted in 0.9% saline) for eight days. Treatment was followed by a single subcutaneous injection of miR-375 inhibitor. H9c2 rat cardiac myocytes and adult murine cardiomyocytes (AMCs) were cultured in vitro and treated with doxorubicin, with and without pretreatment with miR-375 inhibitor.

Results

Doxorubicin significantly upregulated miR-375 expression in vitro and in vivo, and inhibition of miR-375 re-established myocardial redox homeostasis, prevented doxorubicin-induced oxidative stress and cardiomyocyte apoptosis, and activated the PDK1/AKT axis by reducing the direct binding of miR-375 to 3′ UTR of the PDK1 gene. Inhibition of PDK1 and AKT abolished the protective role of miR-375 inhibition on doxorubicin-induced oxidative damage.

Conclusions

Inhibition of miR-375 prevented oxidative damage in a mouse model of doxorubicin-induced cardiac toxicity in vivo and in doxorubicin-treated rat and mouse cardiomyocytes in vitro through the PDK1/AKT signaling pathway.

]]>
<![CDATA[Notoginsenoside R1 Suppresses Inflammatory Signaling and Rescues Renal Ischemia-Reperfusion Injury in Experimental Rats]]> https://www.researchpad.co/article/Ne85b7045-d1cd-4d67-8413-c1f18324ebe7

Background

Notoginsenoside R1 (NR) is a major dynamic constituent of Panax notoginseng found to possess anti-inflammatory activity against various inflammatory diseases. However, its protective effects against renal ischemia-reperfusion (I/R) injury have not been elucidated. In male Wistar rats, we induced I/R under general anesthesia by occluding the renal artery for 60 min, followed by reperfusion and right nephrectomy.

Material/Methods

Rats were randomized to 4 groups: a sham group, an I/R group, an NR-pretreated (50 mg/kg) before I/R induction group, and an NR control group. All animals were killed at 72 h after I/R induction. Blood and renal tissues were collected, and histological and basic renal function parameters were assessed. In addition, levels of various kidney markers and proinflammatory cytokines were measured using RT-PCR, ELISA, and immunohistochemistry analysis.

Results

After I/R induction, the onset of renal dysfunction was shown by the elevated levels of serum urea, creatinine levels, and histological evaluation, showing a 2-fold increase in the renal failure markers kim-1 and NGAL compared to control rats. Rats pretreated with NR before I/R induction had significantly better renal functions, with attenuated levels of oxidative markers, restored levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), tumor growth factor-β1 (TGF-β1), INF-γ, and IL-6, and increased anti-inflammatory cytokine levels (IL-10) compared to I/R-induced rats.

Conclusions

NR suppressed I/R-induced inflammatory cytokines production by suppressing oxidative stress and kidney markers, suggesting that NR is a promising drug candidate for prevention, progression, and treatment of renal dysfunction.

]]>
<![CDATA[Rhubarb and Astragalus Capsule Attenuates Renal Interstitial Fibrosis in Rats with Unilateral Ureteral Obstruction by Alleviating Apoptosis through Regulating Transforming Growth Factor beta1 (TGF-β1)/p38 Mitogen-Activated Protein Kinases (p38 MAPK) Pathway]]> https://www.researchpad.co/article/Nc4511cd2-586f-4947-b9bd-e02f62a094d9

Background

Rhubarb and astragalus capsule (RAC) has been used in the clinical treatment of chronic kidney disease for decades. However, the mechanism of RAC has not been fully elucidated. This study aimed to investigate the protective effect and mechanisms of RAC on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis.

Material/Methods

The main components of RAC are detected by high-performance liquid phase (HPLC). A rat model of UUO was established, and a subset of rats underwent treatment with RAC. Renal function and renal pathology were examined at 14 days and 21 days after the UUO operation. Renal cell apoptosis was detected by TUNEL staining. The levels of Bcl-2 and Bax in the kidney were examined by western blotting, and the levels of collagen I, α-SMA, transforming growth factor (TGF)-β1, and p38 MAPK in the kidneys were detected by immunohistochemistry.

Results

High-performance liquid phase chromatography showed that RAC contained 1.12 mg/g aloe-emodin, 2.25 mg/g rhein, 1.75 mg/g emodin, and 4.50 mg/g chrysophanol. Administration of RAC significantly decreased the levels of urinary N-acetyl-β-D-glucosaminidase (NAG), serum blood urea nitrogen (BUN), and creatinine (Scr) and also reduced renal tissue damages and interstitial fibrosis induced by UUO in rats. Moreover, the increased levels of collagen I, α-SMA, TGF-β1, p38 MAPK, and the Bax/Bcl-2 ratio, as well as cell apoptosis in the kidney, were induced by UUO, and were all found deceased by RAC treatment.

Conclusions

RAC can improve the renal interstitial fibrosis induced by UUO, and the mechanism may be related to inhibition of renal tubular cell apoptosis via TGF-β1/p38 MAPK pathway.

]]>
<![CDATA[Down-Regulation of Fibroblast Growth Factor 2 (FGF2) Contributes to the Premature Senescence of Mouse Embryonic Fibroblast]]> https://www.researchpad.co/article/N465050c5-1adc-4e58-87ee-e9c4dd1fd45e

Background

Freshly isolated mouse embryonic fibroblasts (MEFs) have great proliferation capacity but quickly enter senescent state after several rounds of cell cycle, a process called premature senescence. Cellular senescence can be induced by various stresses such as telomere erosion, DNA damage, and oncogenic signaling. But the contribution of other molecules, such as growth factors, to cellular senescence is incompletely understood. This study aimed to compare the gene expression difference between non-senescent and senescent MEFs to identify the key molecule(s) involved in the spontaneous senescence of MEFs.

Material/Methods

Primary MEFs were isolated from E12.5 pregnant C57/BL6 mice. The cells were continuously cultured in Dulbecco’s Modified Eagle Medium for 9 passages. SA-β-Gal staining was used as an indicator of cell senescence. The supernatant from primary MEFs (P1 medium) or Passage 6 MEFs (P6 medium) were used to culture freshly isolated MEFs to observe the effects on cell senescence state. Gene expression profiles of primary and senescent MEFs were investigated by RNA-Seq to find the key genes involved in cell senescence. Adipocyte differentiation assay was used to evaluate the stemness of MEFs cultured in FGF2-stimulated medium.

Results

The senescence of MEFs cultured in the P1 medium was alleviated when compared to the P6 medium. Downregulation of FGF2 expression was revealed by RNA-Seq and further confirmed by real-time quantitative polymerase chain reaction and western blot. FGF2-stimulated medium also had anti-senescence function and could maintain the differentiation ability of MEFs.

Conclusions

The premature senescence of MEFs was at least partially caused by FGF2 deficiency. Exogenous FGF2 could alleviate the senescent phenotype.

]]>
<![CDATA[Interleukin-37 Attenuates Lipopolysaccharide (LPS)-Induced Neonatal Acute Respiratory Distress Syndrome in Young Mice via Inhibition of Inflammation and Cell Apoptosis]]> https://www.researchpad.co/article/N94d99bf8-7cfc-47b1-9eba-179e1867daba

Background

Neonatal acute respiratory distress syndrome (ARDS) is a common clinical syndrome caused by lung immaturity and the abnormal synthesis of pulmonary surfactant in preterm newborns, and it has high morbidity and mortality rates. The present study investigated the roles of interleukin-37 (IL-37) in the pathogenesis of neonatal ARDS and the underlying biochemical mechanism.

Material/Methods

We used 6-day-old neonatal C57BL/6 mice to establish the ARDS model. Inflammatory cytokines levels were measured with enzyme-linked immunosorbent assay (ELISA) Kits. The pathological morphology of lung tissues was observed by hematoxylin-eosin (HE) staining. The expression levels of proteins were assessed by Western blotting and apoptotic cells were detected via TUNEL assay. Further, the expression of nucleotide-bound oligomerization domain (Nod)-like receptor P3 (NLRP3) was detected with immunohistochemistry and Western blotting.

Results

IL-37 attenuated lipopolysaccharide (LPS)-induced cell apoptosis and excessive inflammatory cytokines levels, including IL-1β, IL-8, TNF-α, and MCP-1, and ameliorated lung pathological manifestations in an LPS-induced neonatal ARDS model. Moreover, IL-37 suppressed the abnormal expression of proteins related to the CXCR4/SDF-1 chemokine axis and NLRP3 inflammasome pathway.

Conclusions

The present results suggest that IL-37 protect against LPS-induced lung injury through inhibition of inflammation and apoptosis in lung tissue in an LPS-induced neonatal ARDS model. Hence, IL-37 may be considered as a potential therapeutic agent for neonatal ARDS.

]]>
<![CDATA[Use of Electrical Impedance Tomography (EIT) to Estimate Global and Regional Lung Recruitment Volume (VREC) Induced by Positive End-Expiratory Pressure (PEEP): An Experiment in Pigs with Lung Injury]]> https://www.researchpad.co/article/Nb6e78e5a-cf7e-499b-8041-4102ad5fc2fc

Background

Electrical impedance tomography (EIT) is a real-time tool used to monitor lung volume change at the bedside, which could be used to measure lung recruitment volume (VREC) for setting positive end-expiratory pressure (PEEP). We assessed and compared the agreement in VREC measurement with the EIT method versus the flow-derived method.

Material/Methods

In 12 Bama pigs, lung injury was induced by tracheal instillation of hydrochloric acid and verified by an arterial partial pressure of oxygen to inspired oxygen fraction ratio below 200 mmHg. During the end-expiratory occlusion, an airway release maneuver was conduct at 5 and 15 cmH2O of PEEP. VREC was measured by flow-integrated PEEP-induced lung volume change (flow-derived method) and end-expiratory lung impedance change (EIT-derived method). Linear regression and Bland-Altman analysis were used to test the correlation and agreement between these 2 measures.

Results

Lung injury was successfully induced in all the animals. EIT-derived VREC was significantly correlated with flow-derived VREC (R2=0.650, p=0.002). The bias (the lower and upper limits of agreement) was −19 (−182 to 144) ml. The median (interquartile range) of EIT-derived VREC was 322 (218–469) ml, with 110 (59–142) ml and 194 (157–307) ml in dependent and nondependent lung regions, respectively. Global and regional respiratory system compliance increased significantly at high PEEP compared to those at low PEEP.

Conclusions

Close correlation and agreement were found between EIT-derived and flow-derived VREC measurements. The advantages of EIT-derived recruitability assessment included the avoidance of ventilation interruption and the ability to provide regional recruitment information.

]]>
<![CDATA[Protective Effect of Mesenchymal Stromal Cell-Derived Exosomes on Traumatic Brain Injury via miR-216a-5p]]> https://www.researchpad.co/article/Nfaf01cc0-5573-4a25-9b18-04bb377a192e

Background

Transplantation of exosomes derived from mesenchymal stem cells (MSCs-Exo) can improve the recovery of neurological function in rats after traumatic brain injury (TBI). We tested a new hypothesis that brain-derived neurotrophic factor (BDNF)-induced MSCs-Exo can effectively promote functional recovery and neurogenesis in rats after TBI.

Material/Methods

BM-MSCs of rats were extracted by whole bone marrow culture, BDNF was added to BM-MSCs as an intervention, supernatant was collected, and exosomes were separated and purified by ultracentrifugation. Exosomes were identified by Western blot (WB), transmission electron microscopy (TEM), and particle size analysis and were subsequently used in cell and animal experiments. The experimental animals were divided into a sham group, a PBS group, an MSCs-Exo group, and a BDNF-induced MSCs-Exo group (n=12). An electric cortical contusion impactor (eCCI) was used to cause TBI in all rats except the sham group. We investigated the recovery of sensorimotor function and spatial learning ability, inflammation inhibition, and neuron regeneration in rats after TBI.

Results

Compared with the MSCs-Exo group, the BDNF-induced MSCs-Exo group showed better effects in promoting the recovery of sensorimotor function and spatial learning ability. BDNF-induced MSCs-Exo successfully inhibited inflammation and promoted neuronal regeneration in vivo and in vitro. We further analyzed miRNAs in BDNF-induced MSCs-Exo and MSCs-Exo and found that the expression of miR-216a-5p in BDNF-induced MSCs-Exo was significantly higher than that in MSCs-Exo as determined by qRT-PCR. Rescue experiments indicated that miR-216a-5p had a similar function as BDNF-induced MSCs-Exo.

Conclusions

We found that BDNF-induced MSCs-Exo can improve cell migration and inhibit apoptosis better than MSCs-Exo in rats after TBI, and the mechanism may be related to the high expression of miR-216a-5p.

]]>
<![CDATA[Deficiency of Interleukin-36 Receptor Protected Cardiomyocytes from Ischemia-Reperfusion Injury in Cardiopulmonary Bypass]]> https://www.researchpad.co/article/N01036e78-f027-4846-b7de-a6049e0d1003

Background

Interleukin-36 has been demonstrated to be involved in inflammatory responses. Inflammatory responses due to ischemia-reperfusion injury following cardiopulmonary bypass (CPB) can cause heart dysfunction or damage.

Material/Methods

The CPB models were constructed in IL-36R−/−, IL-36RN−/−, and wild-type SD rats. Ultrasonic cardiography and ELISA were used to evaluate the cardiac function and measuring myocardial biomarker levels in different groups. TUNEL assay was used to evaluate apoptosis. Western blot assays and RT-PCR were performed to measure the expression of chemokines and secondary inflammatory cytokines in the heart. Oxidative stress in tissue and cultured cells was assessed using a DCFH-DA fluorescence probe and quantification of superoxide dismutase activity.

Results

Improved systolic function and decreased serum levels of myocardial damage biomarkers were found in IL-36R−/− rats compared to WT rats, while worse cardiac function and cardiomyocyte IR injury were observed in IL-36RN−/− rats compared to WT rats. TUNEL staining and Western blot analyses found that cardiomyocyte apoptosis and inflammation were significantly lower in the hearts of IL-36R−/− rats compared with that of WT rats. Oxidative stress was significantly lower in IL-36R−/− rats compared to WT rats. iNOS expression was significantly reduced, while eNOS expression was increased in the hearts of IL-36R−/− rats. Silencing of IL-36R expression in vitro activated SIRT1/FOXO1/p53 signaling in cardiomyocytes.

Conclusions

IL-36R deficiency in cardiomyocytes repressed infiltration of bone marrow-derived inflammatory cells and oxidative stress dependent on SIRT1-FOXO1 signaling, thus protecting cardiomyocytes and improving cardiac function in CPB model rats.

]]>
<![CDATA[Basic Fibroblast Growth Factor (bFGF) Protects the Blood–Brain Barrier by Binding of FGFR1 and Activating the ERK Signaling Pathway After Intra-Abdominal Hypertension and Traumatic Brain Injury]]> https://www.researchpad.co/article/N19956091-f4e9-445e-9bc4-b06256894250

Background

Intra-abdominal hypertension (IAH) is associated with high morbidity and mortality. IAH leads to intra-abdominal tissue damage and causes dysfunction in distal organs such as the brain. The effect of a combined injury due to IAH and traumatic brain injury (TBI) on the integrity of the blood–brain barrier (BBB) has not been investigated.

Material/Methods

Intracranial pressure (ICP) monitoring, brain water content, EB permeability detection, immunofluorescence staining, real-time PCR, and Western blot analysis were used to examine the effects of IAH and TBI on the BBB in rats, and to characterize the protective effects of basic fibroblast growth factor (bFGF) on combined injury-induced BBB damage.

Results

Combined injury from IAH and TBI to the BBB resulted in brain edema and increased intracranial pressure. The effects of bFGF on alleviating the rat BBB injuries were determined, indicating that bFGF regulated the expression levels of the tight junction (TJ), adhesion junction (AJ), matrix metalloproteinase (MMP), and IL-1β, as well as reduced BBB permeability, brain edema, and intracranial pressure. Moreover, the FGFR1 antagonist PD 173074 and the ERK antagonist PD 98059 decreased the protective effects of bFGF.

Conclusions

bFGF effectively protected the BBB from damage caused by combined injury from IAH and TBI, and binding of FGFR1 and activation of the ERK signaling pathway was involved in these effects.

]]>
<![CDATA[Evaluation of 2 Rat Models for Sepsis Developed by Improved Cecal Ligation/Puncture or Feces Intraperitoneal-Injection]]> https://www.researchpad.co/article/Nb36c1a31-3007-4e6c-8296-11e100f4277c

Background

The aim of this study was to evaluate the clinical characteristics of 2 rat models of sepsis for improved cecal ligation/puncture (CLP) and feces intraperitoneal-injection (FIP), including systemic inflammation, organ dysfunction, and blood coagulation.

Material/Methods

Sixty-two male SD rats were randomly divided into 3 groups: a normal control group (NC, n=6), a CLP group (n=28), and a FIP group (n=28). Ten rats each in the CLP and FIP groups were observed for 72-h mortality rate. The remaining 18 rats in each group were divided into 3 subgroups (n=6) according to their post-operation period (6, 12, and 24 h). Abdominal arterial blood was collected to determine the lactic acid (Lac) concentration, prothrombin time (PT), active partial prothrombin time (APTT), plasmic interleukin-6 (IL-6) level, and cardiac troponin (cTnI) level. The intestines, lung, and heart were collected for pathological examination.

Results

The 72-h mortality rates in the CLP and FIP groups were 60% and 100%, respectively. The Lac level in both groups was significantly elevated at 6, 12, and 24 h after modeling. Compared with the NC group, PT in the CLP and FIP groups was prolonged at 12 and 24 h, and APTT was significantly prolonged at 6 h. IL-6 levels in the CLP and FIP groups peaked at 6 h. The cTnI level in the FIP group was significantly higher at 12 h after modeling compared with the NC group. The intestines, lung, and heart were pathologically damaged at 6 h, and this damage worsened over time.

Conclusions

Both modeling methods induced sepsis in rats and closely mimicked the clinical conditions, but FIP was easier to establish and was more suitable for standardization.

]]>
<![CDATA[Romidepsin (FK228) in a Mouse Model of Lipopolysaccharide-Induced Acute Kidney Injury is Associated with Down-Regulation of the CYP2E1 Gene]]> https://www.researchpad.co/article/N8a8d1711-5c05-4f4f-88c5-f9c64ace4b74

Background

Romidepsin (FK228) or depsipeptide, is a selective inhibitor of histone deacetylase 1 (HDAC1) and HDAC2. This study aimed to investigate the effects and molecular mechanisms of romidepsin (FK228) in a mouse model of acute kidney injury (AKI) induced by lipopolysaccharide (LPS).

Material/Methods

The mouse model of AKI was developed by intraperitoneal injection of LPS. The mice were also treated intraperitoneally with romidepsin (FK228) six hours following injection of LPS. Markers of renal injury were measured, including blood urea nitrogen (BUN), serum creatinine (SCR), and serum cystatin C (Cys C) were measured. Histology and transmission electron microscopy were performed to evaluate tissue injury further. Levels of HDACs were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays were used to investigate the regulation of CYP2E1 expression.

Results

Treatment with romidepsin (FK228) significantly reduced the levels of BUN, SCR, and Cys C induced by LPS. Histology of the mouse kidneys showed that treatment with romidepsin (FK228) reduced the degree of renal injury. CYP2E1 significantly reduced following treatment with romidepsin (FK228) in the mouse model of AKI. Also, acetylation of H3 was upregulated following treatment with romidepsin (FK228), and binding of hepatocyte nuclear factor-1 alpha (HNF-1α) on the CYP2E1 promoter was significantly increased.

Conclusions

In a mouse model of LPS-induced AKI, treatment with romidepsin (FK228) downregulated the expression of CYP2E1 by inhibiting the binding if HNF-1α with the CYP2E1 promoter to reduce renal injury.

]]>
<![CDATA[Mitofusin-2 (Mfn-2) Might Have Anti-Cancer Effect through Interaction with Transcriptional Factor SP1 and Consequent Regulation on Phosphatidylinositol Transfer Protein 3 (PITPNM3) Expression]]> https://www.researchpad.co/article/Ndb7ddfdd-52c6-4077-a672-65174868b965

Background

The aim of this study was to explore the influence of mitofusin-2 (Mfn-2) on phosphatidylinositol transfer protein 3 (PITPNM3) and tumor growth and the potential mechanism behind the regulation of Mfn-2 on PITPNM3 in hepatic carcinoma cell line SMMC-7721.

Material/Methods

We obtained promoter sequence of PITPNM3 gene from University of Santa Cruz (UCSC) genomic database, and we predict transcriptional factor of PITPNM3 genes by JASPAR database. Target transcription factor was determined by comparison of binding sites number for promoter. SMMC-7721 cells were transfected with expression plasmid containing Mfn-2, transcription factor gene and PITPNM3. The cells transfected with empty vector were used as control. Real-time polymerase chain reaction was used to determine the mRNA level of target genes. Co-immunoprecipitation (Co-IP) assay was used to determine the interaction between Mfn-2 and target transcription factor. Chromatin immunoprecipitation assay (ChIP) assay was used to determine the binding of transcription factor with PITPNM3 promoter. Tumorigenicity assay was used to compare the effect of Mfn-2, SP1, and PITPNM3 on tumor development.

Results

SP1 was selected as the target transcriptional factor. In the Co-IP assay, Mfn-2 was shown to interact with SP1. In the ChIP assay Mfn-2 transfection resulted in decreased binding number of SP1 with PITPNM3 promoter. Furthermore, PITPNM3 mRNA levels were significantly increased in SMMC-7721 cells transfected with SP1 but were decreased after transfection with Mfn-2. In nude mice, PITPNM3 and SP1 upregulation lead to larger tumor lump and conversely Mfn-2 upregulation lead to smaller tumor lump.

Conclusions

Mfn-2 could suppress expression of PITPNM3 through interaction with transcription factor SP1; Mfn-2 may have anti-tumor activity; SP1 and PITPNM3 may promote tumor development.

]]>
<![CDATA[Anti-Inflammatory and Antioxidant Effects of Acetyl-L-Carnitine on Atherosclerotic Rats]]> https://www.researchpad.co/article/Nc743224f-fd48-46bf-9a19-a99c9e824a1c

Background

The purpose of the present study was to evaluate the regulatory effects of acetyl-L-carnitine (ALCAR) on atherosclerosis in Wister rats and to explore its anti-atherosclerotic mechanism.

Material/Methods

We randomly divided 32 Wister rats into 4 groups: a normal diet group (control group, n=8), a normal diet+ALCAR group (ALCAR group, n=8), an atherosclerosis group (AS group, n=8), and an atherosclerosis+ALCAR group (AS+ALCAR group, n=8). The serum lipid distribution, oxidative stress, inflammatory factors and adiponectin (APN) in the blood, and heart and aortic tissues were determined using the standard assay kits, xanthine oxidase method, and ELISA, respectively. HE staining was performed to observe aortic pathology structure change, and the level of angiotensin II (AngII) in the aorta was assessed using radioimmunoassay. In addition, real-time quantitative PCR and Western blot analysis were applied to detect the expression of iNOS, IL-1β, TNF-α, and CRP in the aortic and heart tissues.

Results

Compared with the AS group, the levels of serum TC, TG, LDL, and VLDL in rats decreased significantly, while HDL level significantly increased in the AS+ALCAR group. ALCAR administration enhanced the SOD and GSH-Px activities and decreased MDA activity. APN level was significantly elevated in the AS group, but ALCAR had no significant effect on APN. Further, ALCAR reduced the expressions of inflammation factors TNF-α, IL-1β, iNOS, and CRP, and the concentration of AngII in serum, aortic, and heart tissues.

Conclusions

ALCAR can inhibit the expressions of inflammatory factors and antioxidation to suppress the development of atherosclerosis by adjusting blood lipid in the myocardium of AS rats.

]]>
<![CDATA[Interaction of Nuclear Receptor Subfamily 4 Group A Member 1 (Nr4a1) and Liver Linase B1 (LKB1) Mitigates Type 2 Diabetes Mellitus by Activating Monophosphate-Activated Protein Kinase (AMPK)/Sirtuin 1 (SIRT1) Axis and Inhibiting Nuclear Factor-kappa B (NF-κB) Activation]]> https://www.researchpad.co/article/N68cec740-f454-4d68-b114-c57a3f49d959

Background

Nuclear receptor subfamily 4 group A member 1 (Nr4a1) has been increasingly investigated in association with type 2 diabetes mellitus (T2DM). This study aimed to explore its efficacy with liver kinase B1 (LKB1) and potential signaling pathways in T2DM.

Material/Methods

A T2DM model in rats was established by high-fat diet and injection of 30 mg/kg streptozotocin. The ectopic expression of Nr4a1 or in combination with LKB1 was performed in T2DM rats to probe their effects on T2DM. Then, the weight and indicators of blood lipid and blood glucose in normal rats and T2DM rats were measured. The volume change of adipocytes and the size of lipid droplets in white adipose tissue (WAT) were observed by hematoxylin-eosin staining and oil red O staining, respectively. We also measured levels of Nr4a1, LKB1, and adenosine monophosphate-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/Nuclear factor-kappa B (NF-κB) axis-related proteins.

Result

In T2DM rats, Nr4a1 was highly expressed, and body weight, blood lipid and blood glucose were increased, and the volume of adipocytes and the size of lipid droplets in WAT were increased, which were all reversed by low expression of Nr4a1. After treatment with Nr4a1 and LKB1 together, T2DM rats showed decreased levels of blood lipid, blood glucose, and reduced volume of adipocytes and lipid droplet size in WAT, with activated AMPK/SIRT1 signaling pathway and inhibited NF-κB.

Conclusions

Our results highlight that interaction of Nr4a1 and LKB1 can mitigate T2DM by activating the AMPK/SIRT1 signaling pathway and inhibiting NF-κB activation. This may offer new insight for T2DM treatment.

]]>