ResearchPad - antibody-producing-cells https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[ICOS signaling promotes a secondary humoral response after re-challenge with <i>Plasmodium chabaudi chabaudi</i> AS]]> https://www.researchpad.co/article/elastic_article_7745 Malaria, which is caused by the protozoan parasite Plasmodium, remains a major global health problem, as over 400,000 people die from this disease every year. Further understanding of the mechanisms that contribute to protective immunity against this parasite will serve to promote the development of an effective vaccine. Here, we describe the importance of the co-stimulatory molecule ICOS during secondary infection with the rodent parasite Plasmodium chabaudi chabaudi AS. We show that ICOS promotes the expansion of memory T cells, their acquisition of a secondary follicular helper T (Tfh) cell phenotype, and their ability to provide help to MBCs after reinfection. While ICOS deficient mice control the initial parasite load after re-challenge, the absence of ICOS leads to higher relapsing parasitemia compared to wild-type mice. We establish that the lack of expansion of effector cells with a Tfh cell phenotype in Icos-/- mice prevents germinal center formation after secondary infection. Thus, we show that ICOS signaling in T cells promotes an effective memory T cell response and suggests that the enhancement of this co-stimulatory pathway during vaccination may enhance protective immunity to blood-stage Plasmodium infection.

]]>
<![CDATA[Post-stroke infections associated with spleen volume reduction: A pilot study]]> https://www.researchpad.co/article/elastic_article_7682 Spleen volume reduction followed by re-expansion has been described in acute ischemic stroke in both animal and human studies. Splenic contraction might be partially due to sympathetic hyperactivity and might be accompanied by release of splenocytes in the peripheral circulation, leading to immunodepression.AimsTo investigate whether spleen volume changes in the first week after stroke are associated with post-stroke infections, changes in lymphocytes count and autonomic dysfunction.MethodsIn patients with acute ischemic stroke, spleen sizes were calculated from abdominal CT images on day one and day seven. Spleen size reduction was defined as > 10% spleen size reduction between day one and day seven. Post stroke infections were diagnosed during the first seven days after stroke onset using the modified criteria of the US Center of Disease Control and Prevention. We assessed the time course of leukocyte subsets and analysed pulse rate variability (PRV) indices.ResultsPost-stroke infections occurred in six out of 11 patients (55%) with spleen size reduction versus in five out of 27 patients (19%) without spleen size reduction (p = 0,047). Spleen size reduction was associated with a drop in lymphocytes and several lymphocyte subsets from admission to day one, and a higher NIHSS at admission and at day three (p = 0,028 and p = 0,006 respectively). No correlations could be found between spleen volume change and PRV parameters.ConclusionPost-stroke infections and a drop in lymphocytes and several lymphocyte subsets are associated with spleen volume reduction in acute ischemic stroke. ]]> <![CDATA[A Novel HIV Vaccine Adjuvanted by IC31 Induces Robust and Persistent Humoral and Cellular Immunity]]> https://www.researchpad.co/article/5989dab9ab0ee8fa60badf30

The HIV vaccine strategy that, to date, generated immune protection consisted of a prime-boost regimen using a canarypox vector and an HIV envelope protein with alum, as shown in the RV144 trial. Since the efficacy was weak, and previous HIV vaccine trials designed to generate antibody responses failed, we hypothesized that generation of T cell responses would result in improved protection. Thus, we tested the immunogenicity of a similar envelope-based vaccine using a mouse model, with two modifications: a clade C CN54gp140 HIV envelope protein was adjuvanted by the TLR9 agonist IC31®, and the viral vector was the vaccinia strain NYVAC-CN54 expressing HIV envelope gp120. The use of IC31® facilitated immunoglobulin isotype switching, leading to the production of Env-specific IgG2a, as compared to protein with alum alone. Boosting with NYVAC-CN54 resulted in the generation of more robust Th1 T cell responses. Moreover, gp140 prime with IC31® and alum followed by NYVAC-CN54 boost resulted in the formation and persistence of central and effector memory populations in the spleen and an effector memory population in the gut. Our data suggest that this regimen is promising and could improve the protection rate by eliciting strong and long-lasting humoral and cellular immune responses.

]]>
<![CDATA[Switchable resolution in soft x-ray tomography of single cells]]> https://www.researchpad.co/article/N83fafb3a-9522-40a6-a68c-b2c601c68e90

The diversity of living cells, in both size and internal complexity, calls for imaging methods with adaptable spatial resolution. Soft x-ray tomography (SXT) is a three-dimensional imaging technique ideally suited to visualizing and quantifying the internal organization of single cells of varying sizes in a near-native state. The achievable resolution of the soft x-ray microscope is largely determined by the objective lens, but switching between objectives is extremely time-consuming and typically undertaken only during microscope maintenance procedures. Since the resolution of the optic is inversely proportional to the depth of focus, an optic capable of imaging the thickest cells is routinely selected. This unnecessarily limits the achievable resolution in smaller cells and eliminates the ability to obtain high-resolution images of regions of interest in larger cells. Here, we describe developments to overcome this shortfall and allow selection of microscope optics best suited to the specimen characteristics and data requirements. We demonstrate that switchable objective capability advances the flexibility of SXT to enable imaging cells ranging in size from bacteria to yeast and mammalian cells without physically modifying the microscope, and we demonstrate the use of this technology to image the same specimen with both optics.

]]>
<![CDATA[Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis]]> https://www.researchpad.co/article/5c8acc39d5eed0c48498f231

Diffuse cutaneous leishmaniasis (DCL) is a rare form of leishmaniasis where parasites grow uncontrolled in diffuse lesions across the skin. Meta-transcriptomic analysis of biopsies from DCL patients infected with Leishmania amazonensis demonstrated an infiltration of atypical B cells producing a surprising preponderance of the IgG4 isotype. DCL lesions contained minimal CD8+ T cell transcripts and no evidence of persistent TH2 responses. Whereas localized disease exhibited activated (so-called M1) macrophage presence, transcripts in DCL suggested a regulatory macrophage (R-Mϕ) phenotype with higher levels of ABCB5, DCSTAMP, SPP1, SLAMF9, PPARG, MMPs, and TM4SF19. The high levels of parasite transcripts in DCL and the remarkable uniformity among patients afforded a unique opportunity to study parasite gene expression in this disease. Patterns of parasite gene expression in DCL more closely resembled in vitro parasite growth in resting macrophages, in the absence of T cells. In contrast, parasite gene expression in LCL revealed 336 parasite genes that were differently upregulated, relative to DCL and in vitro macrophage growth, and these transcripts may represent transcripts that are produced by the parasite in response to host immune pressure.

]]>
<![CDATA[Bivalent oral cholera vaccination induces a memory B cell response to the V. cholerae O1-polysaccharide antigen in Haitian adults]]> https://www.researchpad.co/article/5c5ca2c6d5eed0c48441eaae

The bivalent killed whole-cell oral cholera vaccine (BivWC) is being increasingly used to prevent cholera. The presence of O-antigen-specific memory B cells (MBC) has been associated with protective immunity against cholera, yet MBC responses have not been evaluated after BivWC vaccination. To address this knowledge gap, we measured V. cholerae O1-antigen MBC responses following BivWC vaccination. Adults in St. Marc, Haiti, received 2 doses of the BivWC vaccine, Shanchol, two weeks apart. Participants were invited to return at days 7, 21, 44, 90, 180 and 360 after the initial vaccination. Serum antibody and MBC responses were assessed at each time-point before and following vaccination. We observed that vaccination with BivWC resulted in significant O-antigen specific MBC responses to both Ogawa and Inaba serotypes that were detected by day 21 and remained significantly elevated over baseline for up to 12 months following vaccination. The BivWC oral cholera vaccine induces durable MBC responses to the V. cholerae O1-antigen. This suggests that long-term protection observed following vaccination with BivWC could be mediated or maintained by MBC responses.

]]>
<![CDATA[EBV miRNA expression profiles in different infection stages: A prospective cohort study]]> https://www.researchpad.co/article/5c6dc9c8d5eed0c48452a18f

The Epstein-Barr virus (EBV) produces different microRNAs (miRNA) with distinct regulatory functions within the infectious cycle. These viral miRNAs regulate the expression of viral and host genes and have been discussed as potential diagnostic markers or even therapeutic targets, provided that the expression profile can be unambiguously correlated to a specific stage of infection or a specific EBV-induced disorder. In this context, miRNA profiling becomes more important since the roles of these miRNAs in the pathogenesis of infections and malignancies are not fully understood. Studies of EBV miRNA expression profiles are sparse and have mainly focused on associated malignancies. This study is the first to examine the miRNA profiles of EBV reactivation and to use a correction step with seronegative patients as a reference. Between 2012 and 2017, we examined the expression profiles of 11 selected EBV miRNAs in 129 whole blood samples from primary infection, reactivation, healthy carriers and EBV seronegative patients. Three of the miRNAs could not be detected in any sample. Other miRNAs showed significantly higher expression levels and prevalence during primary infection than in other stages; miR-BHRF1-1 was the most abundant. The expression profiles from reactivation differed slightly but not significantly from those of healthy carriers, but a specific marker miRNA for each stage could not be identified within the selected EBV miRNA targets.

]]>
<![CDATA[Desensitization and treatment with APRIL/BLyS blockade in rodent kidney transplant model]]> https://www.researchpad.co/article/5c67305fd5eed0c484f37a27

Alloantibody represents a significant barrier in kidney transplant through the sensitization of patients prior to transplant through antibody mediated rejection (ABMR). APRIL BLyS are critical survival factors for mature B lymphocytes plasma cells, the primary source of alloantibody. We examined the effect of APRIL/BLyS blockade via TACI-Ig (Transmembrane activator calcium modulator cyclophilin lig interactor-Immunoglobulin) in a preclinical rodent model as treatment for both desensitization ABMR. Lewis rats were sensitized with Brown Norway (BN) blood for 21 days. Following sensitization, animals were then sacrificed or romized into kidney transplant (G4, sensitized transplant control); desensitization with TACI-Ig followed by kidney transplant (G5, sensitized + pre-transplant TACI-Ig); kidney transplant with post-transplant TACI-Ig for 21 days (G6, sensitized + post-transplant TACI-Ig); desensitization with TACI-Ig followed by kidney transplant post-transplant TACI-Ig for 21 days (G7, sensitized + pre- post-transplant TACI-Ig). Animals were sacrificed on day 21 post-transplant tissues were analyzed using flow cytometry, IHC, ELISPOT, RT-PCR. Sensitized animals treated with APRIL/BLyS blockade demonstrated a significant decrease in marginal zone non-switched B lymphocyte populations (p<0.01). Antibody secreting cells were also significantly reduced in the sensitized APRIL/BLyS blockade treated group. Post-transplant APRIL/BLyS blockade treated animals were found to have significantly less C4d deposition less ABMR as defined by Banff classification when compared to groups receiving APRIL/BLyS blockade before transplant or both before after transplant (p<0.0001). The finding of worse ABMR in groups receiving APRIL/BLyS blockade before both before after transplant may indicate that B lymphocyte depletion in this setting also resulted in regulatory lymphocyte depletion resulting in a worse rejection. Data presented here demonstrates that the targeting of APRIL BLyS can significantly deplete mature B lymphocytes, antibody secreting cells, effectively decrease ABMR when given post-transplant in a sensitized animal model.

]]>
<![CDATA[Differential immunoglobulin and complement levels in leprosy prior to development of reversal reaction and erythema nodosum leprosum]]> https://www.researchpad.co/article/5c58d665d5eed0c484031d84

Background

Leprosy is a treatable infectious disease caused by Mycobacterium leprae. However, there is additional morbidity from leprosy-associated pathologic immune reactions, reversal reaction (RR) and erythema nodosum leprosum (ENL), which occur in 1 in 3 people with leprosy, even with effective treatment of M. leprae. There is currently no predictive marker in use to indicate which people with leprosy will develop these debilitating immune reactions. Our peripheral blood mononuclear cell (PBMC) transcriptome analysis revealed that activation of the classical complement pathway is common to both RR and ENL. Additionally, differential expression of immunoglobulin receptors and B cell receptors during RR and ENL support a role for the antibody-mediated immune response during both RR and ENL. In this study, we investigated B-cell immunophenotypes, total and M. leprae-specific antibodies, and complement levels in leprosy patients with and without RR or ENL. The objective was to determine the role of these immune mediators in pathogenesis and assess their potential as biomarkers of risk for immune reactions in people with leprosy.

Methodology/findings

We followed newly diagnosed leprosy cases (n = 96) for two years for development of RR or ENL. They were compared with active RR (n = 35), active ENL (n = 29), and healthy household contacts (n = 14). People with leprosy who subsequently developed ENL had increased IgM, IgG1, and C3d-associated immune complexes with decreased complement 4 (C4) at leprosy diagnosis. People who developed RR also had decreased C4 at leprosy diagnosis. Additionally, elevated anti-M. leprae antibody levels were associated with subsequent RR or ENL.

Conclusions

Differential co-receptor expression and immunoglobulin levels before and during immune reactions intimate a central role for humoral immunity in RR and ENL. Decreased C4 and elevated anti-M. leprae antibodies in people with new diagnosis of leprosy may be risk factors for subsequent development of leprosy immune reactions.

]]>
<![CDATA[Leishmania infantum recombinant kinesin degenerated derived repeat (rKDDR): A novel potential antigen for serodiagnosis of visceral leishmaniasis]]> https://www.researchpad.co/article/5c5ca29fd5eed0c48441e78e

Visceral leishmaniasis (VL) or kala-azar, the most severe form of leishmaniasis, can lead to death if not properly diagnosed and treated. Correct identification of infected patients and reservoirs is vital for controlling the spread of leishmaniasis. Current diagnostic kits for leishmaniasis show high sensitivity and specificity, but can also result in false negatives and cross reactions with related parasitic infections. New diagnostic methods with greater accuracy are urgently needed for diagnosis of leishmaniasis. In this study, we aimed to uncover a new highly effective antigen for the diagnosis of visceral leishmaniasis in dogs and humans, aiming to improve the accuracy compared with those of current methods of diagnosis. Initially, in-silico epitope prediction analyses identified several potential B-cell epitopes in the repetitive region of Leishmania infantum kinesin, which co-localized with predicted structural disordered regions, suggesting high potential for antigenicity. Based on this analysis, 8.5 genomic motifs, which encode the repetitive sequence of 39 degenerate amino acids, were selected for recombinant expression. BLASTn analysis of this repetitive region indicated that it is absent in the T. cruzi parasite, which is closely related to Leishmania, indicating the specificity of this region. This potentially antigenic protein, named recombinant kinesin degenerated derived repeat (rKDDR), was recombinantly expressed in Escherichia coli BL21-Star using the pET28a-TEV expression vector. We then evaluated the performance of rKDDR in correctly diagnosing Leishmania infection and compared this new assay with currently used diagnostic tests for leishmaniasis. rKDDR showed greater sensitivity and specificity in correctly diagnosing leishmaniasis both in human (sensitivity 92.86% and specificity 100%) and canine (sensitivity 88.54% and specificity 97.30%) sera compared with those of rK39 (human: sensitivity 90.48% and specificity 97.92%; canine: sensitivity 78.13% and specificity 90.09%). In addition, the rKDDR-ELISA outperformed the EIE-LVC kit, which is the serologic kit recommended by the Brazilian Ministry of Health for the diagnosis of canine visceral leishmaniasis. These results indicate that rKDDR is a highly promising candidate for diagnosis of visceral leishmaniasis, and is more accurate than the currently used gold-standard antigens.

]]>
<![CDATA[Different operators and histologic techniques in the assessment of germinal center-like structures in primary Sjögren’s syndrome minor salivary glands]]> https://www.researchpad.co/article/5c644913d5eed0c484c2f56d

Objective

A standardization of minor salivary gland (MSG) histopathology in primary Sjögren’s syndrome (pSS) has been recently proposed. Although there is strong agreement that germinal center (GC)-like structures should be routinely identified, due to their prognostic value, a consensus regarding the best protocol is still lacking. Aim of this study was to compare the performance of different histological techniques and operators to identify GC-like structures in pSS MSGs. MSG biopsies from 50 pSS patients were studied.

Methods

Three blinded operators (one pathologist and two rheumatologists with different years of experience in pSS MSG assessment) assessed 50 MSGs of which one slide was stained with haematoxylin and eosin (H&E) and consecutive slides were processed to investigate CD3/CD20, CD21 and Bcl-6 expression.

Results

By assessing 225 foci, the best agreement was between H&E-stained sections evaluated by the rheumatologist with more years of experience in pSS MSG assessment and CD3/CD20 segregation. In the foci with CD21 positivity, the agreement further increased. Bcl-6- foci could display a GC, detected with other staining, but not vice versa.

Conclusion

GC assessment on H&E-stained sections should be performed with caution, being operator-dependent. The combination of H&E with CD3/CD20 and CD21 staining should be recommended as it is reliable, feasible, able to overcome the bias of operator experience and easily transferrable into routine practice.

]]>
<![CDATA[Towards an understanding of C9orf82 protein/CAAP1 function]]> https://www.researchpad.co/article/5c40f79cd5eed0c484386488

C9orf82 protein, or conserved anti-apoptotic protein 1 or caspase activity and apoptosis inhibitor 1 (CAAP1) has been implicated as a negative regulator of the intrinsic apoptosis pathway by modulating caspase expression and activity. In contrast, an independent genome wide screen for factors capable of driving drug resistance to the topoisomerase II (Topo II) poisons doxorubicin and etoposide, implicated a role for the nuclear protein C9orf82 in delaying DSBs repair downstream of Topo II, hereby sensitizing cells to DSB induced apoptosis. To determine its function in a genetically defined setting in vivo and ex vivo, we here employed CRISPR/Cas9 technology in zygotes to generate a C9orf82 knockout mouse model. C9orf82ko/ko mice were born at a Mendelian ratio and did not display any overt macroscopic or histological abnormalities. DSBs repair dependent processes like lymphocyte development and class switch recombination (CSR) appeared normal, arguing against a link between the C9orf82 encoded protein and V(D)J recombination or CSR. Most relevant, primary pre-B cell cultures and Tp53 transformed mouse embryo fibroblasts (MEFs) derived from C9orf82ko/ko E14.5 and wild type embryos displayed comparable sensitivity to a number of DNA lesions, including DSBs breaks induced by the topoisomerase II inhibitors, etoposide and doxorubicin. Likewise, the kinetics of γH2AX formation and resolution in response to etoposide of C9orf82 protein proficient, deficient and overexpressing MEFs were indistinguishable. These data argue against a direct role of C9orf82 protein in delaying repair of Topo II generated DSBs and regulating apoptosis. The genetically defined systems generated in this study will be of value to determine the actual function of C9orf82 protein.

]]>
<![CDATA[Alemtuzumab induction combined with reduced maintenance immunosuppression is associated with improved outcomes after lung transplantation: A single centre experience]]> https://www.researchpad.co/article/5c478c9dd5eed0c484bd36c6

Question addressed by the study

The value of induction therapy in lung transplantation is controversial. According to the ISHLT, only about 50% of patients transplanted within the last 10 years received induction therapy. We reviewed our institutional experience to investigate the impact of induction therapy on short- and long-term outcomes.

Materials/Patients and methods

Between 2007 and 2015, 446 patients with a complete follow-up were included in this retrospective analysis. Analysis comprised long-term kidney function, infectious complications, incidence of rejection and overall survival.

Results

A total of 231 patients received alemtuzumab, 50 patients antithymocyte globulin (ATG) and 165 patients did not receive induction therapy (NI). The alemtuzumab group revealed the lowest rate of chronic kidney insufficiency (NI: 52.2%; ATG: 60%; alemtuzumab: 36.6%; p = 0.001). Both, the NI group (p<0.001) and the ATG group (p = 0.010) showed a significant increase of serum creatinine during follow-up compared to alemtuzumab patients. Furthermore, alemtuzumab group experienced the lowest rate of infection in the first year after transplantation. Finally, improved survival, low rates of acute cellular rejection (ACR), lymphocytic bronchiolitis (LB) and chronic lung allograft dysfunction (CLAD) were found in patients treated either with alemtuzumab or ATG.

Conclusion

Alemtuzumab induction therapy followed by reduced maintenance immunosuppression is associated with a better kidney function compared to no induction and ATG. Survival rate as well as freedom from ACR and CLAD were comparable between alemtuzumab and ATG.

]]>
<![CDATA[Epstein-Barr virus microRNAs regulate B cell receptor signal transduction and lytic reactivation]]> https://www.researchpad.co/article/5c3d00f8d5eed0c48403729d

MicroRNAs (miRNAs) are post-transcriptional regulatory RNAs that can modulate cell signaling and play key roles in cell state transitions. Epstein-Barr virus (EBV) expresses >40 viral miRNAs that manipulate both viral and cellular gene expression patterns and contribute to reprogramming of the host environment during infection. Here, we identified a subset of EBV miRNAs that desensitize cells to B cell receptor (BCR) stimuli, and attenuate the downstream activation of NF-kappaB or AP1-dependent transcription. Bioinformatics and pathway analysis of Ago PAR-CLIP datasets identified multiple EBV miRNA targets related to BCR signal transduction, including GRB2, SOS1, MALT1, RAC1, and INPP5D, which we validated in reporter assays. BCR signaling is critical for B cell activation, proliferation, and differentiation, and for EBV, is linked to reactivation. In functional assays, we demonstrate that EBV miR-BHRF1-2-5p contributes to the growth of latently infected B cells through GRB2 regulation. We further determined that activities of EBV miR-BHRF1-2-5p, EBV miR-BART2-5p, and a cellular miRNA, miR-17-5p, directly regulate virus reactivation triggered by BCR engagement. Our findings provide mechanistic insight into some of the key miRNA interactions impacting the proliferation of latently infected B cells and importantly, governing the latent to lytic switch.

]]>
<![CDATA[EBNA3C facilitates RASSF1A downregulation through ubiquitin-mediated degradation and promoter hypermethylation to drive B-cell proliferation]]> https://www.researchpad.co/article/5c3d00ded5eed0c484036313

EBV latent antigen 3C (EBNA3C) is essential for EBV-induced primary B-cell transformation. Infection by EBV induces hypermethylation of a number of tumor suppressor genes, which contributes to the development of human cancers. The Ras association domain family isoform 1A (RASSF1A) is a cellular tumor suppressor, which regulates a broad range of cellular functions, including apoptosis, cell-cycle arrest, mitotic arrest, and migration. However, the expression of RASSF1A is lost in many human cancers by epigenetic silencing. In the present study, we showed that EBNA3C promoted B-cell transformation by specifically suppressing the expression of RASSF1A. EBNA3C directly interacted with RASSF1A and induced RASSF1A degradation via the ubiquitin-proteasome-dependent pathway. SCFSkp2, an E3-ubiquitin ligase, was recruited by EBNA3C to enhance RASSF1A degradation. Moreover, EBNA3C decreased the transcriptional activity of RASSF1A promoter by enhancing its methylation through EBNA3C-mediated modulation of DNMTs expression. EBNA3C also inhibited RASSF1A-mediated cell apoptosis, disrupted RASSF1A-mediated microtubule and chromosomal stability, and promoted cell proliferation by upregulating Cyclin D1 and Cyclin E expression. Our data provides new details, which sheds light on additional mechanisms by which EBNA3C can induce B-cell transformation. This will also facilitate the development of novel therapeutic approaches through targeting of the RASSF1A pathway.

]]>
<![CDATA[Immunogenic particles with a broad antigenic spectrum stimulate cytolytic T cells and offer increased protection against EBV infection ex vivo and in mice]]> https://www.researchpad.co/article/5c12cf07d5eed0c484913d6c

The ubiquitous Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and is etiologically linked to the development of several malignancies and autoimmune diseases. EBV has a multifaceted life cycle that comprises virus lytic replication and latency programs. Considering EBV infection holistically, we rationalized that prophylactic EBV vaccines should ideally prime the immune system against lytic and latent proteins. To this end, we generated highly immunogenic particles that contain antigens from both these cycles. In addition to stimulating EBV-specific T cells that recognize lytic or latent proteins, we show that the immunogenic particles enable the ex vivo expansion of cytolytic EBV-specific T cells that efficiently control EBV-infected B cells, preventing their outgrowth. Lastly, we show that immunogenic particles containing the latent protein EBNA1 afford significant protection against wild-type EBV in a humanized mouse model. Vaccines that include antigens which predominate throughout the EBV life cycle are likely to enhance their ability to protect against EBV infection.

]]>
<![CDATA[Cell-intrinsic regulation of peripheral memory-phenotype T cell frequencies]]> https://www.researchpad.co/article/5c215140d5eed0c4843f956f

Memory T and B lymphocyte numbers are thought to be regulated by recent and cumulative microbial exposures. We report here that memory-phenotype lymphocyte frequencies in B, CD4 and CD8 T-cells in 3-monthly serial bleeds from healthy young adult humans were relatively stable over a 1-year period, while Plasmablast frequencies were not, suggesting that recent environmental exposures affected steady state levels of recently activated but not of memory lymphocyte subsets. Frequencies of memory B and CD4 T cells were not correlated, suggesting that variation in them was unlikely to be determined by cumulative antigenic exposures. Immunophenotyping of adult siblings showed high concordance in memory, but not of recently activated lymphocyte subsets. To explore the possibility of cell-intrinsic regulation of T cell memory, we screened effector memory-phenotype T cell (TEM) frequencies in common independent inbred mice strains. Using two pairs from these strains that differed predominantly in either CD4 TEM and/or CD8 TEM frequencies, we constructed bi-parental bone marrow chimeras in F1 recipient mice, and found that memory T cell frequencies in recipient mice were determined by donor genotypes. Together, these data suggest cell-autonomous determination of memory T niche size, and suggest mechanisms maintaining immune variability.

]]>
<![CDATA[Guinea pig immunoglobulin VH and VL naïve repertoire analysis]]> https://www.researchpad.co/article/5c1c0af3d5eed0c484426f9b

The guinea pig has been used as a model to study various human infectious diseases because of its similarity to humans regarding symptoms and immune response, but little is known about the humoral immune response. To better understand the mechanism underlying the generation of the antibody repertoire in guinea pigs, we performed deep sequencing of full-length immunoglobulin variable chains from naïve B and plasma cells. We gathered and analyzed nearly 16,000 full-length VH, Vκ and Vλ genes and analyzed V and J gene segment usage profiles and mutation statuses by annotating recently reported genome data of guinea pig immunoglobulin genes. We found that approximately 70% of heavy, 73% of kappa and 81% of lambda functional germline V gene segments are integrated into the actual V(D)J recombination events. We also found preferential use of a particular V gene segment and accumulated mutation in CDRs 1 and 2 in antigen-specific plasma cells. Our study represents the first attempt to characterize sequence diversity in the expressed guinea pig antibody repertoire and provides significant insight into antibody repertoire generation and Ig-based immunity of guinea pigs.

]]>
<![CDATA[Gene landscape and correlation between B-cell infiltration and programmed death ligand 1 expression in lung adenocarcinoma patients from The Cancer Genome Atlas data set]]> https://www.researchpad.co/article/5c12cf0cd5eed0c484913dd4

Tumor-infiltrating lymphocytes are related to positive clinical prognoses in numerous cancer types. Programmed death ligand 1 (PD-L1), a mediator of the PD-1 receptor, plays an inhibitory role in cancer immune responses. PD-L1 upregulation can impede infiltrating T-cell functions in lung adenocarcinoma (LUAD), a lung cancer subtype. However, associations between the expression of PD-L1 and infiltration of B cells (a major immunoregulatory cell) remain unknown. Therefore, we investigated the role of infiltrating B cells in LUAD progression and its correlation with PD-L1 expression. The Cancer Genome Atlas (TCGA) LUAD data set was used to explore associations among B-cell infiltration, PD-L1 expression, clinical outcome, and gene landscape. Gene set enrichment analysis was used to explore putative signaling pathways and candidate genes. The drug enrichment analysis was used to identify candidate genes and the related drugs. We found that high B-cell infiltration was correlated with better prognoses; however, PD-L1 may interfere with the survival advantage in patients with high B-cell infiltration. The gene landscape was characterized comprehensively, with distinct PD-L1 levels in cell populations with high B-cell infiltration. We obtained five upregulated signaling pathways from the gene landscape: apoptosis, tumor necrosis factor (TNF)-α signaling via nuclear factor (NF)-κB, apical surface, interferon-α response, and KRAS signaling. Moreover, four candidate genes and their related target drugs were also identified, namely interleukin-2β receptor (IL2RB), IL-2γ receptor (IL2RG), Toll-like receptor 8 (TLR8), and TNF. These findings suggest that tumor-infiltrating B cells could act as a clinical factor in anti-PD-L1 immunotherapy for LUAD.

]]>
<![CDATA[Aerosol exposure to intermediate size Nipah virus particles induces neurological disease in African green monkeys]]> https://www.researchpad.co/article/5bff05b7d5eed0c484a339fa

Nipah virus (NiV) infection can lead to severe respiratory or neurological disease in humans. Transmission of NiV has been shown to occur through contact with virus contaminated fomites or consumption of contaminated food. Previous results using the African green monkey (AGM) model of NiV infection identified aspects of infection that, while similar to humans, don’t fully recapitulate disease. Previous studies also demonstrate near uniform lethality that is not consistent with human NiV infection. In these studies, aerosol exposure using an intermediate particle size (7μm) was used to mimic potential human exposure by facilitating virus deposition in the upper respiratory tract. Computed tomography evaluation found some animals developed pulmonary parenchymal disease including consolidations, ground-glass opacities, and reactive adenopathy. Despite the lack of neurological signs, magnetic resonance imaging identified distinct brain lesions in three animals, similar to those previously reported in NiV-infected patients. Immunological characterization of tissues collected at necropsy suggested a local pulmonary inflammatory response with increased levels of macrophages in the lung, but a limited neurologic response. These data provide the first clear evidence of neurological involvement in the AGM that recapitulates human disease. With the development of a disease model that is more representative of human disease, these data suggest that NiV infection in the AGM may be appropriate for evaluating therapeutic countermeasures directed at virus-induced neuropathogenesis.

]]>