ResearchPad - antifungals https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A screening of the MMV Pathogen Box® reveals new potential antifungal drugs against the etiologic agents of chromoblastomycosis]]> https://www.researchpad.co/article/elastic_article_13863 Chromoblastomycosis (CBM) is a chronic subcutaneous mycosis caused by traumatic implantation of many species of black fungi. Due to the refractoriness of some cases and common recurrence of CBM, a more effective and less time-consuming treatment is mandatory. The aim of this study was to identify compounds with in vitro antifungal activity in the Pathogen Box® compound collection against different CBM agents. Synergism of these compounds with drugs currently used to treat CBM was also assessed. An initial screening of the drugs present in this collection at 1 μM was performed with a Fonsecaea pedrosoi clinical strain according to the EUCAST protocol. The compounds with activity against this fungus were also tested against other seven etiologic agents of CBM (Cladophialophora carrionii, Phialophora verrucosa, Exophiala jeanselmei, Exophiala dermatitidis, Fonsecaea monophora, Fonsecaea nubica, and Rhinocladiella similis) at concentrations ranging from 0.039 to 10 μM. The analysis of potential synergism of these compounds with itraconazole and terbinafine was performed by the checkerboard method. Eight compounds inhibited more than 60% of the F. pedrosoi growth: difenoconazole, bitertanol, iodoquinol, azoxystrobin, MMV688179, MMV021013, trifloxystrobin, and auranofin. Iodoquinol produced the lowest MIC values (1.25–2.5 μM) and MMV688179 showed MICs that were higher than all compounds tested (5 - >10 μM). When auranofin and itraconazole were tested in combination, a synergistic interaction (FICI = 0.37) was observed against the C. carrionii isolate. Toxicity analysis revealed that MMV021013 showed high selectivity indices (SI ≥ 10) against the fungi tested. In summary, auranofin, iodoquinol, and MMV021013 were identified as promising compounds to be tested in CBM models of infection.

]]>
<![CDATA[Abrogation of pathogenic attributes in drug resistant <i>Candida auris</i> strains by farnesol]]> https://www.researchpad.co/article/elastic_article_7651 Candida auris, a decade old Candida species, has been identified globally as a significant nosocomial multidrug resistant (MDR) pathogen responsible for causing invasive outbreaks. Biofilms and overexpression of efflux pumps such as Major Facilitator Superfamily and ATP Binding Cassette are known to cause multidrug resistance in Candida species, including C. auris. Therefore, targeting these factors may prove an effective approach to combat MDR in C. auris. In this study, 25 clinical isolates of C. auris from different hospitals of South Africa were used. All the isolates were found capable enough to form biofilms on 96-well flat bottom microtiter plate that was further confirmed by MTT reduction assay. In addition, these strains have active drug efflux mechanism which was supported by rhodamine-6-G extracellular efflux and intracellular accumulation assays. Antifungal susceptibility profile of all the isolates against commonly used drugs was determined following CLSI recommended guidelines. We further studied the role of farnesol, an endogenous quorum sensing molecule, in modulating development of biofilms and drug efflux in C. auris. The MIC for planktonic cells ranged from 62.5–125 mM, and for sessile cells was 125 mM (4h biofilm) and 500 mM (12h and 24h biofilm). Furthermore, farnesol (125 mM) also suppresses adherence and biofilm formation by C. auris. Farnesol inhibited biofilm formation, blocked efflux pumps and downregulated biofilm- and efflux pump- associated genes. Modulation of C. auris biofilm formation and efflux pump activity by farnesol represent a promising approach for controlling life threatening infections caused by this pathogen.

]]>
<![CDATA[Candida lusitaniae in Kuwait: Prevalence, antifungal susceptibility and role in neonatal fungemia]]> https://www.researchpad.co/article/5c8accced5eed0c484990063

Objectives

Candida lusitaniae is an opportunistic yeast pathogen in certain high-risk patient populations/cohorts. The species exhibits an unusual antifungal susceptibility profile with tendency to acquire rapid resistance. Here, we describe prevalence of C. lusitaniae in clinical specimens in Kuwait, its antifungal susceptibility profile and role in neonatal fungemia.

Methods

Clinical C. lusitaniae isolates recovered from diverse specimens during 2011 to 2017 were retrospectively analyzed. All isolates were identified by germ tube test, growth on CHROMagar Candida and by Vitek 2 yeast identification system. A simple species-specific PCR assay was developed and results were confirmed by PCR-sequencing of ITS region of rDNA. Antifungal susceptibility was determined by Etest. Minimum inhibitory concentrations (MICs) were recorded after 24 h incubation at 35°C.

Results

Of 7068 yeast isolates, 134 (1.89%) were identified as C. lusitaniae including 25 (2.52%) among 990 bloodstream isolates. Species-specific PCR and PCR-sequencing of rDNA confirmed identification. Of 11 cases of neonatal candidemia, 9 occurred in NICU of Hospital A and are described here. Eight of 9 neonates received liposomal amphotericin B, which was followed by fluconazole in 7 and additionally by caspofungin in 2 cases as salvage therapy. Three of 8 (37.5%) patients died. No isolate exhibited reduced susceptibility to amphotericin B, fluconazole, voriconazole, caspopfungin, micafungin and anidulafungin. The MIC ± geometric mean values for amphotericin B, fluconazole, voriconazole, and caspofungin were as follows: 0.072 ± 0.037 μg/ml, 2.32 ± 0.49 μg/ml, 0.09 ± 0.01 μg/ml and 0.16 ± 0.08 μg/ml, respectively. Only two isolates exhibited reduced susceptibility to fluconazole.

Conclusions

This study describes the prevalence and antifungal susceptibility profile of clinical C. lusitaniae isolates in Kuwait. No isolate showed reduced susceptibility to amphotericin B. The study highlights the emerging role of C. lusitaniae as a healthcare-associated pathogen capable of causing fungemia in preterm neonates and causing significant mortality.

]]>
<![CDATA[A prospective, multi-center study of Candida bloodstream infections in Chile]]> https://www.researchpad.co/article/5c8c1960d5eed0c484b4d4f3

Background

Active surveillance is necessary for improving the management and outcome of patients with candidemia. The aim of this study was to describe epidemiologic and clinical features of candidemia in children and adults in tertiary level hospitals in Chile.

Methods

We conducted a prospective, multicenter, laboratory-based survey study of candidemia in 26 tertiary care hospitals in Chile, from January 2013 to October 2017.

Results

A total of 780 episodes of candidemia were included, with a median incidence of 0.47/1,000 admissions. Demographic, clinical and microbiological information of 384 cases of candidemia, from 18 hospitals (7,416 beds), was included in this report. One hundred and thirty-four episodes (35%) occurred in pediatric patients and 250 (65%) in adult population. Candida albicans (39%), Candida parapsilosis (30%) and Candida glabrata (10%) were the leading species, with a significant difference in the distribution of species between ages. The use of central venous catheter and antibiotics were the most frequent risk factors in all age groups (> 70%). Three hundred and fifteen strains were studied for antifungal susceptibility; 21 strains (6.6%) were resistant to fluconazole, itraconazole, voriconazole, anidulafungin or micafungin. The most commonly used antifungal therapies were fluconazole (39%) and echinocandins (36%). The overall 30-day survival was 74.2%, significantly higher in infants (82%) and children (86%) compared with neonates (72%), adults (71%) and elderly (70%).

Conclusions

Our prospective, multicenter surveillance study showed a low incidence of candidemia in Chile, with high 30-day survival, a large proportion of elderly patients, C. glabrata as the third most commonly identified strain, a 6.6% resistance to antifungal agents and a frequent use of echinocandins.

]]>
<![CDATA[In vitro activity and mode of action of phenolic compounds on Leishmania donovani]]> https://www.researchpad.co/article/5c7d95f4d5eed0c48473501e

Background

Leishmaniasis is a disease caused by the protozoan parasite, Leishmania. The disease remains a global threat to public health requiring effective chemotherapy for control and treatment. In this study, the effect of some selected phenolic compounds on Leishmania donovani was investigated. The compounds were screened for their anti-leishmanial activities against promastigote and intracellular amastigote forms of Leishmania donovani.

Methodology/Principal findings

The dose dependent effect and cytotoxicity of the compounds were determined by the MTT assay. Flow cytometry was used to determine the effect of the compounds on the cell cycle. Parasite morphological analysis was done by microscopy and growth kinetic studies were conducted by culturing cells and counting at 24 hours intervals over 120 hours. The cellular levels of iron in promastigotes treated with compounds was determined by atomic absorption spectroscopy and the effect of compounds on the expression of iron dependent enzymes was investigated using RT-qPCR.

The IC50 of the compounds ranged from 16.34 μM to 198 μM compared to amphotericin B and deferoxamine controls. Rosmarinic acid and apigenin were the most effective against the promastigote and the intracellular amastigote forms. Selectivity indexes (SI) of rosmarinic acid and apigenin were 15.03 and 10.45 respectively for promastigotes while the SI of 12.70 and 5.21 respectively was obtained for intracellular amastigotes. Morphologically, 70% of rosmarinic acid treated promastigotes showed rounded morphology similar to the deferoxamine control. About 30% of cells treated with apigenin showed distorted cell membrane. Rosmarinic acid and apigenin induced cell arrest in the G0/G1 phase in promastigotes. Elevated intracellular iron levels were observed in promastigotes when parasites were treated with rosmarinic acid and this correlated with the level of expression of iron dependent genes.

Conclusions/Significance

The data suggests that rosmarinic acid exerts its anti-leishmanial effect via iron chelation resulting in variable morphological changes and cell cycle arrest.

]]>
<![CDATA[Efficacy of liposomal amphotericin B and anidulafungin using an antifungal lock technique (ALT) for catheter-related Candida albicans and Candida glabrata infections in an experimental model]]> https://www.researchpad.co/article/5c75ac7dd5eed0c484d088b2

Objective

The aims of this study were as follows. First, we sought to compare the in vitro susceptibility of liposomal amphotericin B (LAmB) and anidulafungin on Candida albicans and Candida glabrata biofilms growing on silicone discs. Second, we sought to compare the activity of LAmB versus anidulafungin for the treatment of experimental catheter-related C. albicans and C. glabrata infections with the antifungal lock technique in a rabbit model.

Methods

Two C. albicans and two C. glabrata clinical strains were used. The minimum biofilm eradication concentration for 90% eradication (MBEC90) values were determined after 48h of treatment with LAmB and anidulafungin. Confocal microscopy was used to visualize the morphology and viability of yeasts growing in biofilms. Central venous catheters were inserted into New Zealand rabbits, which were inoculated of each strain of C. albicans and C. glabrata. Then, catheters were treated for 48h with saline or with antifungal lock technique using either LAmB (5mg/mL) or anidulafungin (3.33mg/mL).

Results

In vitro: anidulafungin showed greater activity than LAmB against C. albicans and C. glabrata strains. For C. albicans: MBEC90 of anidulafungin versus LAmB: CA176, 0.03 vs. 128 mg/L; CA180, 0.5 vs. 64 mg/L. For C. glabrata: MBEC90 of anidulafungin versus LAmB: CG171, 0.5 vs. 64 mg/L; CG334, 2 vs. 32 mg/L. In vivo: for C. albicans species, LAmB and anidulafungin achieved significant reductions relative to growth control of log10 cfu recovered from the catheter tips (CA176: 3.6±0.3 log10 CFU, p≤0.0001; CA180: 3.8±0.1 log10 CFU, p≤0.01). For C. glabrata, anidulafungin lock therapy achieved significant reductions relative to the other treatments (CG171: 4.8 log10 CFU, p≤0.0001; CG334: 5.1 log10 CFU, p≤0.0001)

Conclusions

For the C. albicans strains, both LAmB and anidulafungin may be promising antifungal lock technique for long-term catheter-related infections; however, anidulafungin showed significantly higher activity than LAmB against the C. glabrata strains.

]]>
<![CDATA[Finding the needle in a haystack: Mapping antifungal drug resistance in fungal pathogen by genomic approaches]]> https://www.researchpad.co/article/5c5ca2fad5eed0c48441eee3 ]]> <![CDATA[Vacuolar proton-translocating ATPase is required for antifungal resistance and virulence of Candida glabrata]]> https://www.researchpad.co/article/5c52186dd5eed0c4847982ae

Vacuolar proton-translocating ATPase (V-ATPase) is located in fungal vacuolar membranes. It is involved in multiple cellular processes, including the maintenance of intracellular ion homeostasis by maintaining acidic pH within the cell. The importance of V-ATPase in virulence has been demonstrated in several pathogenic fungi, including Candida albicans. However, it remains to be determined in the clinically important fungal pathogen Candida glabrata. Increasing multidrug resistance of C. glabrata is becoming a critical issue in the clinical setting. In the current study, we demonstrated that the plecomacrolide V-ATPase inhibitor bafilomycin B1 exerts a synergistic effect with azole antifungal agents, including fluconazole and voriconazole, against a C. glabrata wild-type strain. Furthermore, the deletion of the VPH2 gene encoding an assembly factor of V-ATPase was sufficient to interfere with V-ATPase function in C. glabrata, resulting in impaired pH homeostasis in the vacuole and increased sensitivity to a variety of environmental stresses, such as alkaline conditions (pH 7.4), ion stress (Na+, Ca2+, Mn2+, and Zn2+ stress), exposure to the calcineurin inhibitor FK506 and antifungal agents (azoles and amphotericin B), and iron limitation. In addition, virulence of C. glabrata Δvph2 mutant in a mouse model of disseminated candidiasis was reduced in comparison with that of the wild-type and VPH2-reconstituted strains. These findings support the notion that V-ATPase is a potential attractive target for the development of effective antifungal strategies.

]]>
<![CDATA[Evaluation of a national cryptococcal antigen screening program for HIV-infected patients in Uganda: A cost-effectiveness modeling analysis]]> https://www.researchpad.co/article/5c40f7dad5eed0c484386afb

Background

Cryptococcal meningitis accounts for 15% of AIDS-related mortality. Cryptococcal antigen (CrAg) is detected in blood weeks before onset of meningitis, and CrAg positivity is an independent predictor of meningitis and death. CrAg screening for patients with advanced HIV and preemptive treatment is recommended by the World Health Organization, though implementation remains limited. Our objective was to evaluate costs and mortality reduction (lives saved) from a national CrAg screening program across Uganda.

Methods

We created a decision analytic model to evaluate CrAg screening. CrAg screening was considered for those with a CD4<100 cells/μL per national and international guidelines, and in the context of a national HIV test-and-treat program where CD4 testing was not available. Costs (2016 USD) were estimated for screening, preemptive therapy, hospitalization, and maintenance therapy. Parameter assumptions were based on large prospective CrAg screening studies in Uganda, and clinical trials from sub Saharan Africa. CrAg positive (CrAg+) persons could be: (a) asymptomatic and thus eligible for preemptive treatment with fluconazole; or (b) symptomatic with meningitis with hospitalization.

Results

In the base case model for 1 million persons with a CD4 test annually, 128,000 with a CD4<100 cells/μL were screened, and 8,233 were asymptomatic CrAg+ and received preemptive therapy. Compared to no screening and treatment, CrAg screening and treatment in the base case cost $3,356,724 compared to doing nothing, and saved 7,320 lives, for a cost of $459 per life saved, with the $3.3 million in cost savings derived from fewer patients developing fulminant meningitis. In the scenario of a national HIV test-and-treat program, of 1 million HIV-infected persons, 800,000 persons were screened, of whom 640,000 returned to clinic, and 8,233 were incident CrAg positive (CrAg prevalence 1.4%). The total cost of a CrAg screening and treatment program was $4.16 million dollars, with 2,180 known deaths. Conversely, without CrAg screening, the cost of treating meningitis was $3.09 million dollars with 3,806 deaths. Thus, despite the very low CrAg prevalence of 1.4% in the general HIV-infected population, and inadequate retention-in-care, CrAg screening averted 43% of deaths from cryptococcal meningitis at a cost of $662 per death averted.

Conclusion

CrAg screening and treatment programs are cost-saving and lifesaving, assuming preemptive treatment is 77% effective in preventing death, and could be adopted and implemented by ministries of health to reduce mortality in those with advanced HIV disease. Even within HIV test-and-treat programs where CD4 testing is not performed, and CrAg prevalence is only 1.4%, CrAg screening is cost-effective.

]]>
<![CDATA[Multifaceted activity of millipede secretions: Antioxidant, antineurodegenerative, and anti-Fusarium effects of the defensive secretions of Pachyiulus hungaricus (Karsch, 1881) and Megaphyllum unilineatum (C. L. Koch, 1838) (Diplopoda: Julida)]]> https://www.researchpad.co/article/5c37b7abd5eed0c48449087c

Members of the millipede order Julida rely on dominantly quinonic defensive secretions with several minor, non-quinonic components. The free radical-scavenging activities of ethanol, methanol, hexane, and dichloromethane extracts of defensive secretions emitted by Pachyiulus hungaricus (Karsch, 1881) and Megaphyllum unilineatum (C. L. Koch, 1838) were investigated using the ABTS, DPPH, and total reducing power (TRP) tests. The obtained extracts were also tested for inhibition of acetylcholinesterase and tyrosinase activity. Finally, the antifungal potential of both julid extracts was evaluated against seven Fusarium species. Secretions of both species showed activity against free radicals, acetylcholinesterase, tyrosinase, and all of the selected fungal species. The secretions of P. hungaricus exhibited a more potent antioxidative effect than did those of M. unilineatum, while there were no significant differences of antiacetylcholinesterase activity between the tested extracts. Only the hexane extract of M. unilineatum showed an effect on tyrosinase activity stronger than that of P. hungaricus. Fusarium sporotrichioides, F. graminearum, and F. verticillioides were the fungi most resistant to secretions of both julids. The Fusarium species most susceptible to the secretion of P. hungaricus was F. avenaceum, while the concentrations of M. unilienatum extracts needed to inhibit and completely suppress fungal growth were lowest in the case of their action on F. lateritium. Our data support previous findings that julid defensive secretions possess an antimicrobial potential and reveal their antioxidative and antineurodegenrative properties. Bearing in mind the chemical complexity of the tested defensive secretions, we presume that they can also exhibit other biological activities.

]]>
<![CDATA[Antifungal activity of well-defined chito-oligosaccharide preparations against medically relevant yeasts]]> https://www.researchpad.co/article/5c3e4fd7d5eed0c484d79991

Due to their antifungal activity, chitosan and its derivatives have potential to be used for treating yeast infections in humans. However, to be considered for use in human medicine, it is necessary to control and know the chemical composition of the compound, which is not always the case for polymeric chitosans. Here, we analyze the antifungal activity of a soluble and well-defined chito-oligosaccharide (CHOS) with an average polymerization degree (DPn) of 32 and fraction of acetylation (FA) of 0.15 (C32) on 52 medically relevant yeast strains. Minimal inhibitory concentrations (MIC) varied widely among yeast species, strains and isolates (from > 5000 to < 9.77 μg mL-1) and inhibition patterns showed a time- and dose-dependencies. The antifungal activity was predominantly fungicidal and was inversely proportional to the pH, being maximal at pH 4.5, the lowest tested pH. Furthermore, antifungal effects of CHOS fractions with varying average molecular weight indicated that those fractions with an intermediate degree of polymerization, i.e. DP 31 and 54, had the strongest inhibitory effects. Confocal imaging showed that C32 adsorbs to the cell surface, with subsequent cell disruption and accumulation of C32 in the cytoplasm. Thus, C32 has potential to be used as a therapy for fungal infections.

]]>
<![CDATA[Development of NanoLuc-PEST expressing Leishmania mexicana as a new drug discovery tool for axenic- and intramacrophage-based assays]]> https://www.researchpad.co/article/5c09a483d5eed0c4842ca928

The protozoan parasite Leishmania causes leishmaniasis; a spectrum of diseases of which there are an estimated 1 million new cases each year. Current treatments are toxic, expensive, difficult to administer, and resistance to them is emerging. New therapeutics are urgently needed, however, screening the infective amastigote form of the parasite is challenging. Only certain species can be differentiated into axenic amastigotes, and compound activity against these does not always correlate with efficacy against the parasite in its intracellular niche. Methods used to assess compound efficacy on intracellular amastigotes often rely on microscopy-based assays. These are laborious, require specialist equipment and can only determine parasite burden, not parasite viability. We have addressed this clear need in the anti-leishmanial drug discovery process by producing a transgenic L. mexicana cell line that expresses the luciferase NanoLuc-PEST. We tested the sensitivity and versatility of this transgenic strain, in comparison with strains expressing NanoLuc and the red-shifted firefly luciferase. We then compared the NanoLuc-PEST luciferase to the current methods in both axenic and intramacrophage amastigotes following treatment with a supralethal dose of Amphotericin B. NanoLuc-PEST was a more dynamic indicator of cell viability due to its high turnover rate and high signal:background ratio. This, coupled with its sensitivity in the intramacrophage assay, led us to validate the NanoLuc-PEST expressing cell line using the MMV Pathogen Box in a two-step process: i) identify hits against axenic amastigotes, ii) screen these hits using our bioluminescence-based intramacrophage assay. The data obtained from this highlights the potential of compounds active against M. tuberculosis to be re-purposed for use against Leishmania. Our transgenic L. mexicana cell line is therefore a highly sensitive and dynamic system suitable for Leishmania drug discovery in axenic and intramacrophage amastigote models.

]]>
<![CDATA[Early Fungicidal Activity as a Candidate Surrogate Endpoint for All-Cause Mortality in Cryptococcal Meningitis: A Systematic Review of the Evidence]]> https://www.researchpad.co/article/5989d9d5ab0ee8fa60b658f7

Background

Cryptococcal meningitis (CM) is a leading cause of HIV-associated mortality. In clinical trials evaluating treatments for CM, biomarkers of early fungicidal activity (EFA) in cerebrospinal fluid (CSF) have been proposed as candidate surrogate endpoints for all- cause mortality (ACM). However, there has been no systematic evaluation of the group-level or trial-level evidence for EFA as a candidate surrogate endpoint for ACM.

Methods

We conducted a systematic review of randomized trials in treatment of CM to evaluate available evidence for EFA measured as culture negativity at 2 weeks/10 weeks and slope of EFA as candidate surrogate endpoints for ACM. We performed sensitivity analysis on superiority trials and high quality trials as determined by Cochrane measures of trial bias.

Results

Twenty-seven trials including 2854 patients met inclusion criteria. Mean ACM was 15.8% at 2 weeks and 27.0% at 10 weeks with no overall significant difference between test and control groups. There was a statistically significant group-level correlation between average EFA and ACM at 10 weeks but not at 2 weeks. There was also no statistically significant group-level correlation between CFU culture negativity at 2weeks/10weeks or average EFA slope at 10 weeks. A statistically significant trial-level correlation was identified between EFA slope and ACM at 2 weeks, but is likely misleading, as there was no treatment effect on ACM.

Conclusions

Mortality remains high in short time periods in CM clinical trials. Using published data and Institute of Medicine criteria, evidence for use of EFA as a surrogate endpoint for ACM is insufficient and could provide misleading results from clinical trials. ACM should be used as a primary endpoint evaluating treatments for cryptococcal meningitis.

]]>
<![CDATA[Characterization of a Polyethylene Glycol-Amphotericin B Conjugate Loaded with Free AMB for Improved Antifungal Efficacy]]> https://www.researchpad.co/article/5989da70ab0ee8fa60b94b50

Amphotericin B (AMB) is a highly hydrophobic antifungal, whose use is limited by its toxicity and poor solubility. To improve its solubility, AMB was reacted with a functionalized polyethylene glycol (PEG), yielding soluble complex AmB-PEG formulations that theoretically comprise of chemically conjugated AMB-PEG and free AMB that is physically associated with the conjugate. Reverse-phase chromatography and size exclusion chromatography methods using HPLC were developed to separate conjugated AMB-PEG and free AmB, enabling the further characterization of these formulations. Using HPLC and dynamic light scattering analyses, it was observed that the AMB-PEG 2 formulation, having a higher molar ratio of 2 AMB: 1 PEG, possesses more free AMB and has relatively larger particle diameters compared to the AMB-PEG 1 formulation, that consists of 1 AMB: 1 PEG. The identity of the conjugate was also verified using mass spectrometry. AMB-PEG 2 demonstrates improved antifungal efficacy relative to AMB-PEG 1, without a concurrent increase in in vitro toxicity to mammalian cells, implying that the additional loading of free AMB in the AMB-PEG formulation can potentially increase its therapeutic index. Compared to unconjugated AMB, AMB-PEG formulations are less toxic to mammalian cells in vitro, even though their MIC50 values are comparatively higher in a variety of fungal strains tested. Our in vitro results suggest that AMB-PEG 2 formulations are two times less toxic than unconjugated AMB with antifungal efficacy on Candida albicans and Cryptococcus neoformans.

]]>
<![CDATA[Tanzawaic Acids, a Chemically Novel Set of Bacterial Conjugation Inhibitors]]> https://www.researchpad.co/article/5989da09ab0ee8fa60b770e3

Bacterial conjugation is the main mechanism for the dissemination of multiple antibiotic resistance in human pathogens. This dissemination could be controlled by molecules that interfere with the conjugation process. A search for conjugation inhibitors among a collection of 1,632 natural compounds, identified tanzawaic acids A and B as best hits. They specially inhibited IncW and IncFII conjugative systems, including plasmids mobilized by them. Plasmids belonging to IncFI, IncI, IncL/M, IncX and IncH incompatibility groups were targeted to a lesser extent, whereas IncN and IncP plasmids were unaffected. Tanzawaic acids showed reduced toxicity in bacterial, fungal or human cells, when compared to synthetic conjugation inhibitors, opening the possibility of their deployment in complex environments, including natural settings relevant for antibiotic resistance dissemination.

]]>
<![CDATA[Infectious Complications during Tandem High-Dose Chemotherapy and Autologous Stem Cell Transplantation for Children with High-Risk or Recurrent Solid Tumors]]> https://www.researchpad.co/article/5989da3aab0ee8fa60b879f5

We retrospectively analyzed infectious complications during tandem high-dose chemotherapy and autologous stem cell transplantation (HDCT/auto-SCT) in children and adolescents with high-risk or recurrent solid tumors. A total of 324 patients underwent their first HDCT/auto-SCT between October 2004 and September 2014, and 283 of them proceeded to their second HDCT/auto-SCT (a total of 607 HDCT/auto-SCTs). During the early transplant period of 607 HDCT/auto-SCTs (from the beginning of HDCT to day 30 post-transplant), bacteremia, urinary tract infection (UTI), respiratory virus infection, and varicella zoster virus (VZV) reactivation occurred in 7.1%, 2.3%, 13.0%, and 2.5% of HDCT/auto-SCTs, respectively. The early transplant period of the second HDCT/auto-SCT had infectious complications similar to the first HDCT/auto-SCT. During the late transplant period of HDCT/auto-SCT (from day 31 to 1 year post-transplant), bacteremia, UTI, and VZV reactivation occurred in 7.5%, 2.5%, and 3.9% of patients, respectively. Most infectious complications in the late transplant period occurred during the first 6 months post-transplant. There were no invasive fungal infections during the study period. Six patients died from infectious complications (4 from bacterial sepsis and 2 from respiratory virus infection). Our study suggests that infectious complications are similar following second and first HDCT/auto-SCT in children.

]]>
<![CDATA[The Efficacy and Safety of Miconazole Nitrate Mucoadhesive Tablets versus Itraconazole Capsules in the Treatment of Oral Candidiasis: An Open-Label, Randomized, Multicenter Trial]]> https://www.researchpad.co/article/5989daaeab0ee8fa60baa70d

Background

Oral candidiasis (OC) is a common oral fungal infection. Recently, miconazole mucoadhesive tablets have been gaining attention for OC treatment. Despite trials in patients with human immunodeficiency virus and cancer, evidence of its application in the large-scale, general population with OC is lacking. This study aimed to evaluate the efficacy and safety of miconazole nitrate mucoadhesive tablets in comparison with itraconazole capsules for OC treatment.

Methods

The study was a randomized, open-label, parallel-armed, multicenter clinical trial. Totally, 343 patients diagnosed with OC, who met the inclusion criteria, were randomly assigned to either a treatment group that received miconazole nitrate mucoadhesive tablets (10 mg) once daily or a control group that received itraconazole capsules (100 mg QD) for 2 weeks, and were followed up for 2 weeks. The clinical cure, improvement of clinical symptoms/signs, mycologic cure, and safety were evaluated.

Results

The mucoadhesive tablets (n = 171) did not show inferiority to itraconazole (n = 172) in the treatment of OC. At the end of the 14-day treatment, the clinical cure rates were 45.29% and 41.76% in the miconazole and itraconazole groups, respectively (P = 0.3472). At the end of the 14-day follow-up, the clinical cure rates were 51.18% and 41.76% in the miconazole and itraconazole groups, respectively (P = 0.0329). Adverse events occurred in 53 subjects (33 in the miconazole group and 20 in the itraconazole group). There was no statistical difference in the safety profile between miconazole and itraconazole (P = 0.0533). Thrombocytopenic purpura, although rare, occurred in one patient in the miconazole group and was considered a drug-related, severe adverse event.

Conclusion

Miconazole nitrate mucoadhesive tablets may be as effective as systemic itraconazole capsule for OC treatment. Physicians should be cautious about thrombocytopenic purpura occurring as a rare and serious adverse event of miconazole nitrate.

Trial Registration

Chinese Clinical Trial Register ChiCTR-TRC-13003935

]]>
<![CDATA[Increasing incidence of mucormycosis in a large Spanish hospital from 2007 to 2015: Epidemiology and microbiological characterization of the isolates]]> https://www.researchpad.co/article/5989db5dab0ee8fa60be0449

We studied 19 cases of proven/probable mucormycosis diagnosed from 2007 to 2015 in our hospital and assessed the microbiological characteristics of the isolates. We recorded the incidence of mucormycosis and clinical and microbiological data of infected patients. Isolates were identified to molecular level and tested for their antifungal susceptibility to azoles, amphotericin B, and liposomal amphotericin B according to the CLSI M-38 A2 procedure. The incidence of mucormycosis in cases/100,000 hospital admissions during 2007–2015 increased significantly with respect to that reported in 1988–2006 (3.3 vs. 1.2; P<0.05). Patients mainly had hematological malignancies (52.6%) and/or trauma/surgical wounds (52.6%) and had received antifungal agents before the diagnosis of mucormycosis in 68% of cases. Diagnosis was by isolation (n = 17/19) and/or direct staining (n = 17/18) of Mucorales fungi in clinical samples. Identification was by panfungal PCR in patients with negative results in culture and in direct staining. The microorganisms identified were Lichtheimia spp. (42%), Rhizopus spp. (21%), Cunninghamella bertholletiae (16%), and others (21%). Liposomal amphotericin B was always more active than the other drugs against all the microorganisms except C. bertholletiae. All patients received antifungal treatment with 1 or more antifungal agents, mainly liposomal amphotericin B (17/19). Mortality was 47.4%, although this was significantly lower in the 11 patients in whom debridement was performed (18% vs. 87.5%) (P = 0.015). The incidence of mucormycosis has risen in recent years. The proportion of cases with soft tissue involvement was high, and Lichtheimia was the most frequently involved species. The highest antifungal activity was observed with liposomal amphotericin B.

]]>
<![CDATA[Phylogenetic Analysis of Phenotypically Characterized Cryptococcus laurentii Isolates Reveals High Frequency of Cryptic Species]]> https://www.researchpad.co/article/5989daddab0ee8fa60bba5d7

Background

Although Cryptococcus laurentii has been considered saprophytic and its taxonomy is still being described, several cases of human infections have already reported. This study aimed to evaluate molecular aspects of C. laurentii isolates from Brazil, Botswana, Canada, and the United States.

Methods

In this study, 100 phenotypically identified C. laurentii isolates were evaluated by sequencing the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU), D1/D2 region of 28S nuclear ribosomal large subunit rRNA gene (28S-LSU), and the internal transcribed spacer (ITS) of the ribosomal region.

Results

BLAST searches using 550-bp, 650-bp, and 550-bp sequenced amplicons obtained from the 18S-SSU, 28S-LSU, and the ITS region led to the identification of 75 C. laurentii strains that shared 99–100% identity with C. laurentii CBS 139. A total of nine isolates shared 99% identity with both Bullera sp. VY-68 and C. laurentii RY1. One isolate shared 99% identity with Cryptococcus rajasthanensis CBS 10406, and eight isolates shared 100% identity with Cryptococcus sp. APSS 862 according to the 28S-LSU and ITS regions and designated as Cryptococcus aspenensis sp. nov. (CBS 13867). While 16 isolates shared 99% identity with Cryptococcus flavescens CBS 942 according to the 18S-SSU sequence, only six were confirmed using the 28S-LSU and ITS region sequences. The remaining 10 shared 99% identity with Cryptococcus terrestris CBS 10810, which was recently described in Brazil. Through concatenated sequence analyses, seven sequence types in C. laurentii, three in C. flavescens, one in C. terrestris, and one in the C. aspenensis sp. nov. were identified.

Conclusions

Sequencing permitted the characterization of 75% of the environmental C. laurentii isolates from different geographical areas and the identification of seven haplotypes of this species. Among sequenced regions, the increased variability of the ITS region in comparison to the 18S-SSU and 28S-LSU regions reinforces its applicability as a DNA barcode.

]]>
<![CDATA[High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines]]> https://www.researchpad.co/article/5989da52ab0ee8fa60b8e201

Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point.

]]>