ResearchPad - archosauria Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[The fast and the frugal: Divergent locomotory strategies drive limb lengthening in theropod dinosaurs]]> Limb length, cursoriality and speed have long been areas of significant interest in theropod paleobiology, since locomotory capacity, especially running ability, is critical in the pursuit of prey and to avoid becoming prey. The impact of allometry on running ability, and the limiting effect of large body size, are aspects that are traditionally overlooked. Since several different non-avian theropod lineages have each independently evolved body sizes greater than any known terrestrial carnivorous mammal, ~1000kg or more, the effect that such large mass has on movement ability and energetics is an area with significant implications for Mesozoic paleoecology. Here, using expansive datasets that incorporate several different metrics to estimate body size, limb length and running speed, we calculate the effects of allometry on running ability. We test traditional metrics used to evaluate cursoriality in non-avian theropods such as distal limb length, relative hindlimb length, and compare the energetic cost savings of relative hindlimb elongation between members of the Tyrannosauridae and more basal megacarnivores such as Allosauroidea or Ceratosauridae. We find that once the limiting effects of body size increase is incorporated there is no significant correlation to top speed between any of the commonly used metrics, including the newly suggested distal limb index (Tibia + Metatarsus/ Femur length). The data also shows a significant split between large and small bodied theropods in terms of maximizing running potential suggesting two distinct strategies for promoting limb elongation based on the organisms’ size. For small and medium sized theropods increased leg length seems to correlate with a desire to increase top speed while amongst larger taxa it corresponds more closely to energetic efficiency and reducing foraging costs. We also find, using 3D volumetric mass estimates, that the Tyrannosauridae show significant cost of transport savings compared to more basal clades, indicating reduced energy expenditures during foraging and likely reduced need for hunting forays. This suggests that amongst theropods, hindlimb evolution was not dictated by one particular strategy. Amongst smaller bodied taxa the competing pressures of being both a predator and a prey item dominant while larger ones, freed from predation pressure, seek to maximize foraging ability. We also discuss the implications both for interactions amongst specific clades and Mesozoic paleobiology and paleoecological reconstructions as a whole.

<![CDATA[Anatomy of the dinosaur Pampadromaeus barberenai (Saurischia—Sauropodomorpha) from the Late Triassic Santa Maria Formation of southern Brazil]]>

Sauropodomorphs are the most abundant and diverse clade of Triassic dinosaurs, but the taxonomy of their earliest (Carnian) representatives is still poorly understood. One such taxon is Pampadromaeus barberenai, represented by a nearly complete disarticulated skeleton recovered from the upper part of the Santa Maria Formation of Rio Grande do Sul, Brazil. Here, the osteology of Pam. barberenai is fully described for the first time. Detailed comparisons with other Carnian sauropodomorphs reveal a unique anatomy, corroborating its status as a valid species. Potential autapomorphies of Pam. barberenai can be seen in the articulation of the sacral zygapophyses, the length of the pectoral epipodium, the shape of the distal articulation of the femur and the proximal articulation of metatarsal 1. A novel phylogenetic study shows that relationships among the Carnian sauropodomorphs are poorly constrained, possibly because they belong to a “zone of variability”, where homoplasy abounds. Yet, there is some evidence that Pam. barberenai may nest within Saturnaliidae, along with Saturnalia tupiniquim and Chromogisaurus novasi, which represents the sister group to the larger sauropodomorphs, i.e. Bagualosauria.

<![CDATA[The braincase of Malawisaurus dixeyi (Sauropoda: Titanosauria): A 3D reconstruction of the brain endocast and inner ear]]>

A braincase of the Cretaceous titanosaurian sauropod Malawisaurus dixeyi, complete except for the olfactory region, was CT scanned and a 3D rendering of the endocast and inner ear was generated. Cranial nerves appear in the same configuration as in other sauropods, including derived features that appear to characterize titanosaurians, specifically, an abducens nerve canal that passes lateral to the pituitary fossa rather than entering it. Furthermore, the hypoglossal nerve exits the skull via a single foramen, consistent with most titanosaurians, while other saurischians, including the basal titanosauriform, Giraffatitan, contain multiple rootlets. The size of the vestibular labyrinth is smaller than in Giraffatitan, but larger than in most derived titanosaurians. Similar to the condition found in Giraffatitan, the anterior semicircular canal is larger than the posterior semicircular canal. This contrasts with more derived titanosaurians that contain similarly sized anterior and posterior semicircular canals, congruent with the interpretation of Malawisaurus as a basal titanosaurian. Measurements of the humerus of Malawisaurus provide a body mass estimate of 4.7 metric tons. Comparison of body mass to radius of the semicircular canals of the vestibular labyrinth reveals that Malawisaurus fits the allometric relationship found in previous studies of extant mammals and Giraffatitan brancai. As in Giraffatitan, the anterior semicircular canal is significantly larger than is predicted by the allometric relationship suggesting greater sensitivity and slower movement of the head in the sagittal plane.

<![CDATA[A new African Titanosaurian Sauropod Dinosaur from the middle Cretaceous Galula Formation (Mtuka Member), Rukwa Rift Basin, Southwestern Tanzania]]>

The African terrestrial fossil record has been limited in its contribution to our understanding of both regional and global Cretaceous paleobiogeography, an interval of significant geologic and macroevolutionary change. A common component in Cretaceous African faunas, titanosaurian sauropods diversified into one of the most specious groups of dinosaurs worldwide. Here we describe the new titanosaurian Mnyamawamtuka moyowamkia gen. et sp. nov. from the Mtuka Member of the Galula Formation in southwest Tanzania. The new specimen preserves teeth, elements from all regions of the postcranial axial skeleton, parts of both appendicular girdles, and portions of both limbs including a complete metatarsus. Unique traits of M. moyowamkia include the lack of an interpostzygapophyseal lamina in posterior dorsal vertebrae, pronounced posterolateral expansion of middle caudal centra, and an unusually small sternal plate. Phylogenetic analyses consistently place M. moyowamkia as either a close relative to lithostrotian titanosaurians (e.g., parsimony, uncalibrated Bayesian analyses) or as a lithostrotian and sister taxon to Malawisaurus dixeyi from the nearby Aptian? Dinosaur Beds of Malawi (e.g., tip-dating Bayesian analyses). M. moyowamkia shares a few features with M. dixeyi, including semi-spatulate teeth and a median lamina between the neural canal and interpostzygapophyseal lamina in anterior dorsal vertebrae. Both comparative morphology and phylogenetic analyses support Mnyamawamtuka as a distinct and distant relative to Rukwatitan bisepultus and Shingopana songwensis from the younger Namba Member of the Galula Formation with these results largely congruent with newly constrained ages for the Mtuka Member (Aptian–Cenomanian) and Namba Member (Campanian). Coupled with recent discoveries from the Dahkla Oasis, Egypt (e.g., Mansourasaurus shahinae) and other parts of continental Afro-Arabia, the Tanzania titanosaurians refine perspectives on the development of African terrestrial faunas throughout the Cretaceous—a critical step in understanding non-marine paleobiogeographic patterns of Africa that have remained elusive until the past few years.

<![CDATA[A new baby oviraptorid dinosaur (Dinosauria: Theropoda) from the Upper Cretaceous Nemegt Formation of Mongolia]]>

Recent discoveries of new oviraptorosaurs revealed their high diversity from the Cretaceous Period in Asia and North America. Particularly, at the family level, oviraptorids are among the most diverse theropod dinosaurs in the Late Cretaceous of Mongolia and China. A new oviraptorid dinosaur Gobiraptor minutus gen. et sp. nov. from the Upper Cretaceous Nemegt Formation is described here based on a single holotype specimen that includes incomplete cranial and postcranial elements. The most prominent characters of Gobiraptor are its thickened rostrodorsal end of the mandibular symphysis and a rudimentary lingual shelf on each side of the dentary. Each lingual shelf is lined with small occlusal foramina and demarcated by a weakly developed lingual ridge. This mandibular morphology of Gobiraptor is unique among oviraptorids and likely to be linked to a specialized diet that probably included hard materials, such as seeds or bivalves. The osteohistology of the femur of the holotype specimen indicates that the individual was fairly young at the time of its death. Phylogenetic analysis recovers Gobiraptor as a derived oviraptorid close to three taxa from the Ganzhou region in southern China, but rather distantly related to other Nemegt oviraptorids which, as the results of recent studies, are also not closely related to each other. Gobiraptor increases diversity of oviraptorids in the Nemegt Formation and its presence confirms the successful adaptation of oviraptorids to a mesic environment.

<![CDATA[If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?]]>

The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed “out of Africa” hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of scarabaeine dung beetles and provide examples.

<![CDATA[PLoS Biology Issue Image | Vol. 16(3) March 2018]]>

Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary

Pterosaurs were winged cousins of the dinosaurs and lived from around 200 million years ago to 66 million years ago, when the last pterosaurs disappeared during the Cretaceous-Paleogene extinction that wiped out the dinosaurs. The pterosaurs are thought to have declined in diversity before their final extinction, suggesting that gradual processes played a major role in their demise. However, this study by Longrich et al. describes hundreds of new pterosaur fossils from the end of the Cretaceous in Morocco, including as many as seven species. These represent three different families and show substantial variation in size and skeletal proportions, suggesting that they occupied a wide range of ecological niches. The image shows an artist's impression of diverse pterosaurs flying over the Moroccan coast 66 million years ago.

Image Credit: John Conway

<![CDATA[Novel insight into the origin of the growth dynamics of sauropod dinosaurs]]>

Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies.

<![CDATA[A New Centrosaurine Ceratopsid, Machairoceratops cronusi gen et sp. nov., from the Upper Sand Member of the Wahweap Formation (Middle Campanian), Southern Utah]]>

The Upper Cretaceous (middle-late Campanian) Wahweap Formation of southern Utah contains the oldest diagnostic evidence of ceratopsids (to date, all centrosaurines) in North America, with a number of specimens recovered from throughout a unit that spans between 81 and 77 Ma. Only a single specimen has been formally named, Diabloceratops eatoni, from the lower middle member of the formation. Machairoceratops cronusi gen. et sp. nov., a new centrosaurine ceratopsid from the upper member of the Wahweap Formation, is here described based on cranial material representing a single individual recovered from a calcareous mudstone. The specimen consists of two curved and elongate orbital horncores, a left jugal, a nearly complete, slightly deformed braincase, the left squamosal, and a mostly complete parietal ornamented by posteriorly projected, anterodorsally curved, elongate spikes on either side of a midline embayment. The fan-shaped, stepped-squamosal is diagnostic of Centrosaurinae, however, this element differs from the rectangular squamosal in Diabloceratops. Machairoceratops also differs in the possession of two anterodorsally (rather than laterally) curved epiparietal ornamentations on either side of a midline embayment that are distinguished by a posteromedially-oriented sulcus along the entire length of the epiparietal. Additionally, the parietosquamosal frill is lacking any other epiossifications along its periphery. Machairoceratops shares a triangular (rather than round) frill and spike-like epiparietal loci (p1) ornamentation with the stratigraphically lower Diabloceratops. Both parsimony and Bayesian phylogenetic analyses place Machairoceratops as an early-branching centrosaurine. However, the parsimony-based analysis provides little resolution for the position of the new taxon, placing it in an unresolved polytomy with Diabloceratops. The resultant Bayesian topology yielded better resolution, aligning Machairoceratops as the definitive sister taxon to a clade formed by Diabloceratops and Albertaceratops. Considered together, both phylogenetic methods unequivocally place Machairoceratops as an early-branching centrosaurine, and given the biostratigraphic position of Machairoceratops, these details increase the known ceratopsid diversity from both the Wahweap Formation and the southern portion of Laramidia. Finally, the unique morphology of the parietal ornamentation highlights the evolutionary disparity of frill ornamentation near the base of Centrosaurinae.

<![CDATA[New Material of the Pterosaur Gladocephaloideus Lü et al., 2012 from the Early Cretaceous of Liaoning Province, China, with Comments on Its Systematic Position]]>

Although there are nine genera of ctenochasmatoids reported from the Jehol Biota, at present each is known from a specimen that has either a skull or a relatively complete postcranial skeleton. A nearly complete juvenile specimen of Gladocephaloideus from the Lower Cretaceous Jiufotang Formation of Sihedang, Lingyuan of Liaoning Province is the most complete ctenochasmatoid preserved to date with a skull and postcranial skeleton. Based on the holotype (IG-CAGS 08–07) and the nearly complete new specimen (JPM 2014–004), the diagnosis of Gladocephaloideus is amended: approximately 50 teeth in total with sharp tips; small nasoantorbital opening, occupying approximately 13% of total skull length; ratio of prenarial rostrum length to skull length approximately 0.63; deep groove along the mid-line of the mandibular symphysis; length to width ratio of the longest cervical vertebra = 4.1; ratio of femur length to tibia length = 0.61; tibia as long as the wing-phalange 1. Phylogenetic analysis recovers Gladocephaloideus within the clade Ctenochasmatidae. Gladocephaloideus has a closer relationship to the Chinese Pterofiltrus rather than to other ctenochasmatid pterosaurs. Microstructure of limb bones implies that JPM 2014–004 represents an early juvenile of Gladocephaloideus jingangshanensis, and that the type specimen is not a fully grown specimen either. We assume that the holotype may equate to the late juvenile or sub-adult developmental stage of Gladocephaloideus.

<![CDATA[A Basal Tapejarine (Pterosauria; Pterodactyloidea; Tapejaridae) from the Crato Formation, Early Cretaceous of Brazil]]>

A three-dimensional and almost complete pterosaur mandible from the Crato Formation (Early Cretaceous of Northeastern Brazil), Araripe Basin, is described as a new species of a tapejarine tapejarid. Tapejarines are a particular group of toothless pterosaurs, characterized by well-developed cranial crests, downturned rostra, and have been proposed to represent frugivorous flying reptiles. Though comparatively well represented and distributed, the evolutionary history of the group is still poorly known, and the internal relationships of its members are not well understood. The new species here reported, named Aymberedactylus cearensis gen. et sp. nov., adds new data concerning the evolution of the group, concerning their morphology and geographical origin. It differs from known tapejarids due to its unusually elongate retroarticular process and a shallow fossa on the splenial exhibiting distinctive rugose texture. Furthermore, it exhibits a suite of basal and derived conditions within the Tapejaridae, demonstrating how their morphological traits probably evolved and that these forms were even more diverse than already acknowledged. The discovery of Aymberedactylus cearensis sheds new light on the evolutionary history of the Tapejarinae.

<![CDATA[Empirical and Bayesian approaches to fossil-only divergence times: A study across three reptile clades]]>

Estimating divergence times on phylogenies is critical in paleontological and neontological studies. Chronostratigraphically-constrained fossils are the only direct evidence of absolute timing of species divergence. Strict temporal calibration of fossil-only phylogenies provides minimum divergence estimates, and various methods have been proposed to estimate divergences beyond these minimum values. We explore the utility of simultaneous estimation of tree topology and divergence times using BEAST tip-dating on datasets consisting only of fossils by using relaxed morphological clocks and birth-death tree priors that include serial sampling (BDSS) at a constant rate through time. We compare BEAST results to those from the traditional maximum parsimony (MP) and undated Bayesian inference (BI) methods. Three overlapping datasets were used that span 250 million years of archosauromorph evolution leading to crocodylians. The first dataset focuses on early Sauria (31 taxa, 240 chars.), the second on early Archosauria (76 taxa, 400 chars.) and the third on Crocodyliformes (101 taxa, 340 chars.). For each dataset three time-calibrated trees (timetrees) were calculated: a minimum-age timetree with node ages based on earliest occurrences in the fossil record; a ‘smoothed’ timetree using a range of time added to the root that is then averaged over zero-length internodes; and a tip-dated timetree. Comparisons within datasets show that the smoothed and tip-dated timetrees provide similar estimates. Only near the root node do BEAST estimates fall outside the smoothed timetree range. The BEAST model is not able to overcome limited sampling to correctly estimate divergences considerably older than sampled fossil occurrence dates. Conversely, the smoothed timetrees consistently provide node-ages far older than the strict dates or BEAST estimates for morphologically conservative sister-taxa when they sit on long ghost lineages. In this latter case, the relaxed-clock model appears to be correctly moderating the node-age estimate based on the limited morphological divergence. Topologies are generally similar across analyses, but BEAST trees for crocodyliforms differ when clades are deeply nested but contain very old taxa. It appears that the constant-rate sampling assumption of the BDSS tree prior influences topology inference by disfavoring long, unsampled branches.

<![CDATA[A Centrosaurine (Dinosauria: Ceratopsia) from the Aguja Formation (Late Campanian) of Northern Coahuila, Mexico]]>

While centrosaurines and ceratopsids in general are abundant in the Late Campanian of northern Laramidia, they are much less commonly found in southern Laramidia. This has supported hypotheses of dinosaur provinciality and endemism in the Late Cretaceous with the delineation of at least two separate faunal zones, north and south Laramidia. There have been 12 genera of centrosaurines recognized from northern Laramidia while two genera, Diabloceratops and Nasutoceratops, have been named from southern Laramidia. We present an osteological description and taphonomic outline for a new centrosaurine ceratopsid from the Aguja Formation of northern Coahuila, Mexico that is not currently diagnosable to the generic level, but likely represents a new taxon. Further, we have included three-dimensional surface scans of all material attributed to this animal. Considering the large number of centrosaurines from northern Laramidia, it is likely that cladistic analyses are biased towards this faunal zone. New findings of southern centrosaurines are needed to correct this bias. This discovery expands the range of centrosaurines south to Coahuila, Mexico and adds new information to better characterize the morphology and taxonomy of centrosaurines from southern Laramidia and their evolution in comparison to their northern counterparts.

<![CDATA[Dinosaur Metabolism and the Allometry of Maximum Growth Rate]]>

The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.

<![CDATA[Volume of the crocodilian brain and endocast during ontogeny]]>

Understanding complex situations and planning difficult actions require a brain of appropriate size. Animal encephalisation provides an indirect information about these abilities. The brain is entirely composed of soft tissue and, as such, rarely fossilises. As a consequence, the brain proportions and morphology of some extinct vertebrates are usually only inferred from their neurocranial endocasts. However, because the morphological configuration of the brain is not fully reflected in the endocast, knowledge of the brain/endocast relationship is essential (especially the ratio of brain volume to endocast volume or the equivalent proportion of interstitial tissue) for studying the endocasts of extinct animals. Here we assess the encephalic volume and structure of modern crocodilians. The results we obtained using ex vivo magnetic resonance imaging reveal how the endoneurocranial cavity and brain compartments of crocodilians change configuration during ontogeny. We conclude that the endocasts of adult crocodilians are elongated and expanded while their brains are more linearly organised. The highest proportion of brain tissue to endocast volume is in the prosencephalon at over 50% in all but the largest animals, whereas the proportion in other brain segments is under 50% in all but the smallest animals and embryos. Our results may enrich the field of palaeontological study by offering more precise phylogenetic interpretations of the neuroanatomic characteristics of extinct vertebrates at various ontogenetic stages.

<![CDATA[A New Giant Titanosauria (Dinosauria: Sauropoda) from the Late Cretaceous Bauru Group, Brazil]]>

Titanosaurian dinosaurs include some of the largest land-living animals that ever existed, and most were discovered in Cretaceous deposits of Argentina. Here we describe the first Brazilian gigantic titanosaur, Austroposeidon magnificus gen. et sp. nov., from the Late Cretaceous Presidente Prudente Formation (Bauru Group, Paraná Basin), São Paulo State, southeast Brazil. The size of this animal is estimated around 25 meters. It consists of a partial vertebral column composed by the last two cervical and the first dorsal vertebrae, all fairly complete and incomplete portions of at least one sacral and seven dorsal elements. The new species displays four autapomorphies: robust and tall centropostzygapophyseal laminae (cpol) in the last cervical vertebrae; last cervical vertebra bearing the posterior centrodiapophyseal lamina (pcdl) bifurcated; first dorsal vertebra with the anterior and posterior centrodiapophyseal laminae (acdl/pcdl) curved ventrolaterally, and the diapophysis reaching the dorsal margin of the centrum; posterior dorsal vertebra bearing forked spinoprezygapophyseal laminae (sprl). The phylogenetic analysis presented here reveals that Austroposeidon magnificus is the sister group of the Lognkosauria. CT scans reveal some new osteological internal features in the cervical vertebrae such as the intercalation of dense growth rings with camellae, reported for the first time in sauropods. The new taxon further shows that giant titanosaurs were also present in Brazil during the Late Cretaceous and provides new information about the evolution and internal osteological structures in the vertebrae of the Titanosauria clade.

<![CDATA[Apparent sixth sense in theropod evolution: The making of a Cretaceous weathervane]]>


Two separate and distinctive skills are necessary to find prey: Detection of its presence and determination of its location. Surface microscopy of the dentary of albertosaurines revealed a previously undescribed sensory modification, as will be described here. While dentary “foramina” were previously thought to contain tactile sensory organs, the potential function of this theropod modification as a unique localizing system is explored in this study.


Dentary surface perforations were examined by surface epi-illumination microscopy in tyrannosaurine and albertosaurine dinosaurs to characterize their anatomy. Fish lateral lines were examined as potentially comparable structures.


In contrast to the subsurface vascular bifurcation noted in tyrannosaurines (which lack a lateral dentary surface groove), the area subjacent to the apertures in albertosaurine grooves has the appearance of an expanded chamber. That appearance seemed to be indistinguishable from the lateral line of fish.


Dentary groove apertures in certain tyrannosaurid lines (specifically albertosaurines) not only have a unique appearance, but one with significant functional and behavior implications. The appearance of the perforations in the dentary groove of albertosaurines mirrors that previously noted only with specialized neurologic structures accommodating derived sensory functions, as seen in the lateral line of fish. The possibility that this specialized morphology could also represent a unique function in albertosaurine theropods for interacting with the environment or facilitating prey acquisition cannot be ignored. It is suggested that these expanded chambers function in perceiving and aligning the body relative to the direction of wind, perhaps a Cretaceous analogue of the contemporary midwestern weathervane.

<![CDATA[A Basal Lithostrotian Titanosaur (Dinosauria: Sauropoda) with a Complete Skull: Implications for the Evolution and Paleobiology of Titanosauria]]>

We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian—Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla—lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) ‘tongue-like’ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with ‘strut-like’ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a ‘ghost lineage’ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies—such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward-facing snout—that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation.

<![CDATA[Spiclypeus shipporum gen. et sp. nov., a Boldly Audacious New Chasmosaurine Ceratopsid (Dinosauria: Ornithischia) from the Judith River Formation (Upper Cretaceous: Campanian) of Montana, USA]]>

This study reports on a new ceratopsid, Spiclypeus shipporum gen et sp. nov., from the lower Coal Ridge Member of the Judith River Formation in Montana, USA, which dates to ~76 Ma (upper Campanian). The species is distinguished by rugose dorsal contacts on the premaxillae for the nasals, laterally projecting postorbital horncores, fully fused and anteriorly curled P1 and P2 epiparietals, and a posterodorsally projecting P3 epiparietal. The holotype specimen is also notable for its pathological left squamosal and humerus, which show varied signs of osteomyelitis and osteoarthritis. Although the postorbital horncores of Spiclypeus closely resemble those of the contemporaneous ‘Ceratops’, the horncores of both genera are nevertheless indistinguishable from those of some other horned dinosaurs, including Albertaceratops and Kosmoceratops; ‘Ceratops’ is therefore maintained as a nomen dubium. Cladistic analysis recovers Spiclypeus as the sister taxon to the clade Vagaceratops + Kosmoceratops, and appears transitional in the morphology of its epiparietals. The discovery of Spiclypeus adds to the poorly known dinosaur fauna of the Judith River Formation, and suggests faunal turnover within the formation.

<![CDATA[Two new ootaxa from the late Jurassic: The oldest record of crocodylomorph eggs, from the Lourinhã Formation, Portugal]]>

The Late Jurassic Lourinhã Formation is known for its abundant remains of dinosaurs, crocodylomorphs and other vertebrates. Among this record are nine localities that have produced either dinosaur embryos, eggs or eggshell fragments. Herein, we describe and identify the first crocodiloid morphotype eggs and eggshells from the Lourinhã Formation, from five occurrences. One clutch from Cambelas, composed of 13 eggs, eggshell fragments from Casal da Rola and Peralta, one crushed egg and eggshells from Paimogo North, and four crushed eggs as well as eggshell fragments from Paimogo South. We observed and confirmed diagnostic morphological characters for crocodiloid eggshells and which are consistent with a crocodylomorph affinity, such as the ellipsoidal shape, wedge-shaped shell units, triangular extinction under cross-polarized light, and tabular ultrastructure. This material is distinctive enough to propose two new ootaxa within the oofamily Krokolithidae, Suchoolithus portucalensis, oogen. and oosp. nov., for the material from Cambelas, the most complete clutch known for crocodiloid eggs, and Krokolithes dinophilus, oosp. nov., for the remaining material. These are the oldest crocodylomorph eggs known, extending the fossil record for this group to the Late Jurassic. Furthermore, except for the clutch from Cambelas, the material was found with theropod eggs and nests, in the other four occurrences, which seem to suggest some form of biological relationship, still unclear at this point.