ResearchPad - arms https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Adaptation to unstable coordination patterns in individual and joint actions]]> https://www.researchpad.co/article/elastic_article_7665 Previous research on interlimb coordination has shown that some coordination patterns are more stable than others, and function as attractors in the space of possible phase relations between different rhythmic movements. The canonical coordination patterns, i.e. the two most stable phase relations, are in-phase (0 degree) and anti-phase (180 degrees). Yet, musicians are able to perform other coordination patterns in intrapersonal as well as in interpersonal coordination with remarkable precision. This raises the question of how music experts manage to produce these unstable patterns of movement coordination. In the current study, we invited participants with at least five years of training on a musical instrument. We used an adaptation paradigm to address two factors that may facilitate producing unstable coordination patterns. First, we investigated adaptation in different coordination settings, to test the hypothesis that the lower coupling strength between individuals during joint performance makes it easier to achieve stability outside of the canonical patterns than the stronger coupling during individual bimanual performance. Second, we investigated whether adding to the structure of action effects may support achieving unstable coordination patterns, both intra- and inter-individually. The structure of action effects was strengthened by adding a melodic contour to the action effects, a measure that has been shown to improve the acquisition of bimanual coordination skills. Adaptation performance was measured both in terms of asynchrony and variability thereof. As predicted, we found that producing unstable patterns benefitted from the weaker coupling during joint performance. Surprisingly, the structure of action effects did not help with achieving unstable coordination patterns.

]]>
<![CDATA[The impact of body posture on intrinsic brain activity: The role of beta power at rest]]> https://www.researchpad.co/article/N65f7a4e6-ac5f-46ef-91d2-3d4de84bb5d0

Tying the hands behind the back has detrimental effects on sensorimotor perceptual tasks. Here we provide evidence that beta band oscillatory activity in a resting state condition might play a crucial role in such detrimental effects. EEG activity at rest was measured from thirty young participants (mean age = 24.03) in two different body posture conditions. In one condition participants were required to keep their hands freely resting on the table. In the other condition, participants’ hands were tied behind their back. Increased beta power was observed in the left inferior frontal gyrus during the tied hands condition compared to the free hands condition. A control experiment ruled out alternative explanations for observed change in beta power, including muscle tension. Our findings provide new insights on how body postural manipulations impact on perceptual tasks and brain activity.

]]>
<![CDATA[The faster, the better? Relationships between run-up speed, the degree of difficulty (D-score), height and length of flight on vault in artistic gymnastics]]> https://www.researchpad.co/article/5c99030dd5eed0c484b98b90

On vault in artistic gymnastics, a high run-up speed is thought to be important when performing difficult vaults. To test this assumption in a large cohort of elite athletes, we calculated the correlations between the run-up speed, scores, height and length of flight for handspring-, Tsukahara- and Yurchenko-style vaults and compared the performances of male and female elite and junior athletes (n = 407) during the 2016 European Championships. In females, run-up speed correlated significantly with the difficulty (D-) score and height of flight for all vaulting styles (r ≤ 0.80). In males, run-up speed correlated significantly with the D-score, height and length of flight of Tsukahara (r ≤ 0.69) and Yurchenko vaults only (r ≤ 0.65). Males reached 8–9% higher run-up speeds performing handspring and Tsukahara vaults than did females, but similar run-up speeds performing Yurchenko vaults. Elite females achieved higher run-up speeds than junior females performing Yurchenko vaults. Elite males displayed higher run-up speeds than junior males performing handspring and Tsukahara vaults. We conclude that, in females, more difficult vaults require higher run-up speeds than vaults with lower D-scores and thus, within the measured range of speeds, the faster the run-up, the better, regardless of vaulting style. Males, on the other hand, may not need to exhaust their sprinting capacity, even for the most difficult vaults. Finally, the knowledge of the required run-up speed for each vault helps coaches to estimate each athlete’s potential and/or to focus the training on developing the required physical qualities.

]]>
<![CDATA[Implementation of a practical and effective pilot intervention against transmission of Taenia solium by pigs in the Banke district of Nepal]]> https://www.researchpad.co/article/5c7d95d7d5eed0c484734daa

Taenia solium is a zoonotic cestode parasite which causes human neurocysticercosis. Pigs transmit the parasite by acting as the intermediate host. An intervention was implemented to control transmission of T. solium by pigs in Dalit communities of Banke District, Nepal. Every 3 months, pigs were vaccinated with the TSOL18 recombinant vaccine (Cysvax, IIL, India)) and, at the same time, given an oral treatment with 30mg/kg oxfendazole (Paranthic 10% MCI, Morocco). The prevalence of porcine cysticercosis was determined in both an intervention area as well as a similar no intervention control area, among randomly selected, slaughter-age pigs. Post mortem assessments were undertaken both at the start and at the end of the intervention. Participants conducting the post mortem assessments were blinded as to the source of the animals being assessed. At the start of the intervention the prevalence of porcine cysticercosis was 23.6% and 34.5% in the control and intervention areas, respectively. Following the intervention, the prevalence of cysticercosis in pigs from the control area was 16.7% (no significant change), whereas no infection was detected after complete slicing of all muscle tissue and brain in animals from the intervention area (P = 0.004). These findings are discussed in relation to the feasibility and sustainability of T. solium control. The 3-monthly vaccination and drug treatment intervention in pigs used here is suggested as an effective and practical method for reducing T. solium transmission by pigs. The results suggest that applying the intervention over a period of years may ultimately reduce the number of tapeworm carriers and thereby the incidence of NCC.

]]>
<![CDATA[Effects of realistic sheep elbow kinematics in inverse dynamic simulation]]> https://www.researchpad.co/article/5c8823cbd5eed0c48463901b

Looking for new opportunities in mechanical design, we are interested in studying the kinematic behaviour of biological joints. The real kinematic behaviour of the elbow of quadruped animals (which is submitted to high mechanical stresses in comparison with bipeds) remains unexplored. The sheep elbow joint was chosen because of its similarity with a revolute joint. The main objective of this study is to estimate the effects of elbow simplifications on the prediction of joint reaction forces in inverse dynamic simulations. Rigid motions between humerus and radius-ulna were registered during full flexion-extension gestures on five cadaveric specimens. The experiments were initially conducted with fresh specimens with ligaments and repeated after removal of all soft tissue, including cartilage. A digital image correlation system was used for tracking optical markers fixed on the bones. The geometry of the specimens was digitized using a 3D optical scanner. Then, the instantaneous helical axis of the joint was computed for each acquisition time. Finally, an OpenSim musculoskeletal model of the sheep forelimb was used to quantify effects of elbow joint approximations on the prediction of joint reaction forces. The motion analysis showed that only the medial-lateral translation is sufficiently large regarding the measuring uncertainty of the experiments. This translation assimilates the sheep elbow to a screw joint instead of a revolute joint. In comparison with fresh specimens, the experiments conducted with dry bone specimens (bones without soft tissue) provided different kinematic behaviour. From the results of our inverse dynamic simulations, it was noticed that the inclusion of the medial-lateral translation to the model made up with the mean flexion axis does not affect the predicted joint reaction forces. A geometrical difference between the axis of the best fitting cylinder and the mean flexion axis (derived from the motion analysis) of fresh specimens was highlighted. This geometrical difference impacts slightly the prediction of joint reactions.

]]>
<![CDATA[Comparing the diagnostic performance of radiation dose-equivalent radiography, multi-detector computed tomography and cone beam computed tomography for finger fractures – A phantom study]]> https://www.researchpad.co/article/5c8823e0d5eed0c4846391da

Purpose

To compare the diagnostic performance and raters´confidence of radiography, radiography equivalent dose multi-detector computed tomography (RED-MDCT) and radiography equivalent dose cone beam computed tomography (RED-CBCT) for finger fractures.

Methods

Fractures were inflicted artificially and randomly to 10 cadaveric hands of body donors. Radiography as well as RED-MDCT and RED-CBCT imaging were performed at dose settings equivalent to radiography. Images were de-identified and analyzed by three radiologists regarding finger fractures, joint involvement and confidence with their findings. Reference standard was consensus reading by two radiologists of the fracturing protocol and high-dose multi-detector computed tomography (MDCT) images. Sensitivity and specificity were calculated and compared with Cochrane´s Q and post hoc analysis. Rater´s confidence was calculated with Friedman Test and post hoc Nemenyi Test.

Results

Rater´s confidence, inter-rater correlation, specificity for fractures and joint involvement were higher in RED-MDCT and RED-CBCT compared to radiography. No differences between the modalities were found regarding sensitivity.

Conclusion

In this phantom study, radiography equivalent dose computed tomography (RED-CT) demonstrates a partly higher diagnostic accuracy than radiography. Implementing RED-CT in the diagnostic work-up of finger fractures could improve diagnostics, support correct classification and adequate treatment. Clinical studies should be performed to confirm these preliminary results.

]]>
<![CDATA[Is there an accurate relationship between simple self-reported functional limitations and the assessment of physical capacity in early old age?]]> https://www.researchpad.co/article/5c8c194dd5eed0c484b4d398

Study design

Observational study.

Objective

To assess the relationship between individual self-reports and measurements of physical condition in early old age.

Background

The use of self-reported questions assessing physical limitations remains questionable in large epidemiological studies. We aimed to test whether there is an accurate relationship between objective measures of physical capabilities and answers given to questions asked of general early old age populations.

Methods

20,335 subjects (45 to 69 years old) performed two gait speed tests at usual and at rapid speeds, and a hand grip strength test. They also completed an interview which included questions about general and specific limitations on their ability to walk one kilometer, climb stairs, and carry 5 kg over a distance of 10 meters. The questions were coded by the patients on a 4-point scale according to the severity of the limitation. Analyses were performed using description of distributions and related tests were carried out.

Results

A fair association was found between individual self-reports and measurements of physical state: limitations on walking one kilometer and climbing stairs were more closely related to rapid than to usual gait speed and to carrying a 5 kg load. For general limitations, the strength of these associations was weaker than the other scores. The association between hand grip strength and the reported score for carrying a mass was better than that for gait speed tests.

Conclusion

Such simple self-assessment questions on physical performance might be useful tools for evaluating functional limitations across a large early old age population in epidemiological research.

]]>
<![CDATA[A computational scheme for internal models not requiring precise system parameters]]> https://www.researchpad.co/article/5c803c6ed5eed0c484ad895a

Utilization by humans of a precise and adaptable internal model of the dynamics of the body in generating movements is a well-supported concept. The prevailing opinion is that such an internal model ceaselessly develops through long-term repetition and accumulation in the central nervous system (CNS). However, a long-term learning process would not be absolutely necessary for the formation of internal models. It is possible to estimate the dynamics of the system by using a motor command and its resulting output, instead of constructing a model of the dynamics with precise parameters. In this study, a computational model is proposed that uses a motor command and its corresponding output to estimate the dynamics of the system and it is examined whether the proposed model is capable of describing a series of empirical movements. The proposed model was found to be capable of describing humans’ fast movements which require compensation for system dynamics as well as sensory delays. In addition, the proposed model shows equifinality under inertial perturbations as seen in several experimental studies. This satisfactory reproducibility of the proposed computation raises the possibility that humans make a movement by estimating the system dynamics with a copy of motor command and sensory output on a momentary basis, without the need to identify precise system parameters.

]]>
<![CDATA[Interventions to improve the quality of bystander cardiopulmonary resuscitation: A systematic review]]> https://www.researchpad.co/article/5c6dc9b8d5eed0c48452a083

Background

Performing high-quality bystander cardiopulmonary resuscitation (CPR) improves the clinical outcomes of victims with sudden cardiac arrest. Thus far, no systematic review has been performed to identify interventions associated with improved bystander CPR quality.

Methods

We searched Ovid MEDLINE, Ovid EMBASE, EBSCO CINAHL, Ovid PsycInfo, Thomson Reuters SCI-EXPANDED, and the Cochrane Central Register of Controlled Trials to retrieve studies published from 1 January 1966 to 5 October 2018 associated with interventions that could improve the quality of bystander CPR. Data regarding participant characteristics, interventions, and design and outcomes of included studies were extracted.

Results

Of the initially identified 2,703 studies, 42 were included. Of these, 32 were randomized controlled trials. Participants included adults, high school students, and university students with non-medical professional majors. Interventions improving bystander CPR quality included telephone dispatcher-assisted CPR (DA-CPR) with simplified or more concrete instructions, compression-only CPR, and other on-scene interventions, such as four-hand CPR for elderly rescuers, kneel on opposite sides for two-person CPR, and CPR with heels for a tired rescuer. Devices providing real-time feedback and mobile devices containing CPR applications or software were also found to be beneficial in improving the quality of bystander CPR. However, using mobile devices for improving CPR quality or for assisting DA-CPR might cause rescuers to delay starting CPR.

Conclusions

To further improve the clinical outcomes of victims with cardiac arrest, these effective interventions may be included in the guidelines for bystander CPR.

]]>
<![CDATA[Minimal force transmission between human thumb and index finger muscles under passive conditions]]> https://www.researchpad.co/article/5c706784d5eed0c4847c7163

It has been hypothesized that force can be transmitted between adjacent muscles. Intermuscle force transmission violates the assumption that muscles act in mechanical isolation, and implies that predictions from biomechanical models are in error due to mechanical interactions between muscles, but the functional relevance of intermuscle force transmission is unclear. To investigate intermuscle force transmission between human flexor pollicis longus and the index finger part of flexor digitorum profundus, we compared finger flexion force produced by passive thumb flexion after one of three conditioning protocols: passive thumb flexion-extension cycling, thumb flexion maximal voluntary contraction (MVC), and thumb extension stretch. Finger flexion force increased after all three conditions. Compared to passive thumb flexion-extension cycling, change in finger flexion force was less after thumb extension stretch (mean difference 0.028 N, 95% CI 0.005 to 0.051 N), but not after thumb flexion MVC (0.007 N, 95% CI -0.020 to 0.033 N). As muscle conditioning changed finger flexion force produced by passive thumb flexion, the change in force is likely due to intermuscle force transmission. Thus, intermuscle force transmission resulting from passive stretch of an adjacent muscle is probably small enough to be ignored.

]]>
<![CDATA[Virtual supersampling as post-processing step preserves the trabecular bone morphometry in human peripheral quantitative computed tomography scans]]> https://www.researchpad.co/article/5c6dc9e5d5eed0c48452a446

In the clinical field of diagnosis and monitoring of bone diseases, high-resolution peripheral quantitative computed tomography (HR-pQCT) is an important imaging modality. It provides a resolution where quantitative bone morphometry can be extracted in vivo on patients. It is known that HR-pQCT provides slight differences in morphometric indices compared to the current standard approach micro-computed tomography (micro-CT). The most obvious reason for this is the restriction of the radiation dose and with this a lower image resolution. With advances in micro-CT evaluation techniques such as patient-specific remodeling simulations or dynamic bone morphometry, a higher image resolution would potentially also allow the application of such novel evaluation techniques to clinical HR-pQCT measurements. Virtual supersampling as post-processing step was considered to increase the image resolution of HR-pQCT scans. The hypothesis was that this technique preserves the structural bone morphometry. Supersampling from 82 μm to virtual 41 μm by trilinear interpolation of the grayscale values of 42 human cadaveric forearms resulted in strong correlations of structural parameters (R2: 0.96–1.00). BV/TV was slightly overestimated (4.3%, R2: 1.00) compared to the HR-pQCT resolution. Tb.N was overestimated (7.47%; R2: 0.99) and Tb.Th was slightly underestimated (-4.20%; R2: 0.98). The technique was reproducible with PE%CV between 1.96% (SMI) and 7.88% (Conn.D). In a clinical setting with 205 human forearms with or without fracture measured at 82 μm resolution HR-pQCT, the technique was sensitive to changes between groups in all parameters (p < 0.05) except trabecular thickness. In conclusion, we demonstrated that supersampling preserves the bone morphometry from HR-pQCT scans and is reproducible and sensitive to changes between groups. Supersampling can be used to investigate on the resolution dependency of HR-pQCT images and gain more insight into this imaging modality.

]]>
<![CDATA[Very severe tungiasis in Amerindians in the Amazon lowland of Colombia: A case series]]> https://www.researchpad.co/article/5c65dce5d5eed0c484dec4b0

Background

Tungiasis is a parasitic skin disease caused by penetrating female sand fleas. By nature, tungiasis is a self-limiting infection. However, in endemic settings re-infection is the rule and parasite load gradually accumulates over time. Intensity of infection and degree of morbidity are closely related.

Methodology/principal findings

This case series describes the medical history, the clinical pathology, the socio-economic and the environmental characteristics of very severe tungiasis in five patients living in traditional Amerindian communities in the Amazon lowland of Colombia. Patients had between 400 and 1,300 penetrated sand fleas. The feet were predominantly affected, but clusters of embedded sand fleas also occurred at the ankles, the knees, the elbows, the hands, the fingers and around the anus. The patients were partially or totally immobile. Patients 1 and 3 were cachectic, patient 2 presented severe malnutrition. Patient 3 needed a blood transfusion due to severe anemia. All patients showed a characteristic pattern of pre-existing medical conditions and culture-dependent behavior facilitating continuous re-infection. In all cases intradomiciliary transmission was very likely.

Conclusion/significance

Although completely ignored in the literature, very severe tungiasis occurs in settings where patients do not have access to health care and are stricken in a web of pre-existing illness, poverty and neglect. If not treated, very severe tungiasis may end in a fatal disease course.

]]>
<![CDATA[The benefits of sensation on the experience of a hand: A qualitative case series]]> https://www.researchpad.co/article/5c5ca2abd5eed0c48441e844

Background

The experience of upper limb loss involves loss of both functional capabilities and the sensory connection of a hand. Research studies to restore sensation to persons with upper limb loss with neural interfaces typically measure outcomes through standardized functional tests or quantitative surveys. However, these types of metrics cannot fully capture the personal experience of living with limb loss or the impact of sensory restoration on this experience. Qualitative studies can demonstrate the viewpoints and priorities of specific persons or groups and reveal the underlying conceptual structure of various aspects of their experiences.

Methods and findings

Following a home use trial of a neural-connected, sensory-enabled prosthesis, two persons with upper limb loss were interviewed about their experiences using the sensory restoration system in unsupervised, unconstrained settings. We used grounded theory methodology to examine their experiences, perspectives, and opinions about the sensory restoration system. We then developed a model to describe the impact of sensation on the experience of a hand for persons with upper limb loss.

Conclusions

The experience of sensation was complex and included concepts such as the naturalness of the experience, sensation modality, and the usefulness of the sensory information. Sensation was critical for outcome acceptance, and contributed to prosthesis embodiment, confidence, reduced focus and attention for using the prosthesis, and social interactions. Embodiment, confidence, and social interactions were also key determinants of outcome acceptance. This model provides a unified framework to study and understand the impact of sensation on the experience of limb loss and to understand outcome acceptance following upper limb loss more broadly.

]]>
<![CDATA[Hand grip strength: Reference values for adults and elderly people of Rio Branco, Acre, Brazil]]> https://www.researchpad.co/article/5c5ca2b2d5eed0c48441e8f3

Hand grip strength (HGS) is recognized as an important health indicator, but validated reference values that can be applied to the evaluation of individuals in different populations are still lacking. This work aimed to identify correlations between HGS and anthropometric variables and to establish HGS reference values for adult and elderly populations. This is a population-based cross-sectional study considering the subsets of individuals with healthy right or left upper limbs from a sample of 1,609 adults and elderly residents in Rio Branco, Acre, Brazil. Descriptive statistics of anthropometric measures and HGS values at maximum performance based on three measurements of the two hands were obtained, and Pearson correlations between these variables were applied. Percentile distributions were estimated for right and left HGS by sex and age group. Men presented, in general, a maximum HGS 57% higher than women (43.4 kg vs. 27.6 kg), and also higher HGS levels in the different age groups. In both sexes, the highest HGS values were observed in the age group of 30 to 39 years (men, 46.9 kg; women, 29.4 kg), with a subsequent decline. HGS presented a negative correlation with age and a weak to moderate positive correlation with anthropometric variables, among men and women. The median HGS of men was reduced by about 46% between the ages of 30 and 39 years and 80 years and over (right hand, 46.4 to 23.7 kg; left hand, 42.2 to 23.5 kg) and by about 44% in women (right hand, 29.0 to 16.4 kg, left hand, 27.3 to 15.2 kg). The values identified are a reference for HGS behavior among healthy adults and seniors, although they do not discriminate individuals with specific health conditions. They can be used in rehabilitation programs and subsidize future studies aimed at exploring their potential application in the evaluation of the health condition of adults and elderly individuals.

]]>
<![CDATA[Body composition and adipokines changes after initial treatment with darunavir-ritonavir plus either raltegravir or tenofovir disoproxil fumarate-emtricitabine: A substudy of the NEAT001/ANRS143 randomised trial]]> https://www.researchpad.co/article/5c58d657d5eed0c484031c10

Background

Comparison of changes in body composition, adipokines and inflammatory markers after initial therapy with a nucleos(t)ide reverse transcriptase inhibitor (N(t)RTI)- sparing or containing regimen are scarce.

Design

Randomised Clinical Trial.

Methods

This is the body composition substudy of NEAT 001/ANRS 143, a randomised trial comparing darunavir/ritonavir (DRV/r) plus either raltegravir (RAL) or tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) in 805 ART naïve HIV-infected adults. The primary endpoint was percentage change in limb fat at week 96. Secondary endpoints were associations among these changes and metabolic markers (IL-6, insulin, leptin, adiponectin, FGF-23).

Results

126 subjects (61 DRV/r + RAL and 65 DRV/r + TDF/FTC) were included. The rate of change in BMI between groups for RAL versus TDF/FTC at week 96 was 1.5% per 48-week period (p = 0.015). The rate of change in limb fat mass, trunk fat mass, total body fat and total lean mass was for RAL versus TDF/FTC at week 96 was 2.5% (p = 0.38), 7.3% ((p = 0.021), 4.9% (p = 0.061) and 1.3% (p = 0.12) respectively. Baseline insulin and leptin levels were correlated with baseline limb fat and trunk fat mass [r = 0.31 (p = 0.0043)/r = 0.28 (p = 0.0011) for limb fat, and r = 0.63 (p<0.0001)/r = 0.50(p<0.0001) for trunk fat]. After adjustment, a 10% faster increase in leptin between baseline and week 48 was associated with a more rapid increase in limb fat at week 48 (0.5% per 48 weeks, p<0.001), total body fat mass (0.6% per 48 weeks, p<0.001), and trunk fat mass (0.3% per 48 weeks, p = 0.0026).

Conclusions

After week 96 a N(t)RTI sparing regimen of DRV/r + RAL produced a numerically greater percentage increase in body composition variables with only change in trunk fat mass and BMI being significant.

]]>
<![CDATA[Validation of the Fitbit Charge 2 compared to the ActiGraph GT3X+ in older adults with knee osteoarthritis in free-living conditions]]> https://www.researchpad.co/article/5c5b52a5d5eed0c4842bcd46

Objective

To evaluate physical activity (PA) and sedentary time in subjects with knee osteoarthritis (OA) measured by the Fitbit Charge 2 (Fitbit) and a wrist-worn ActiGraph GT3X+ (AGW) compared to the hip-worn ActiGraph (AGH).

Design

We recruited a cohort of subjects with knee OA from rheumatology clinics. Subjects wore the AGH for four weeks, AGW for two weeks, and Fitbit for two weeks over a four-week study period. We collected accelerometer counts (ActiGraphs) and steps (ActiGraphs, Fitbit) and calculated time spent in sedentary, light, and moderate-to-vigorous activity. We used triaxial PA intensity count cut-points from the literature for ActiGraph and a stride length-based cadence algorithm to categorize Fitbit PA. We compared Fitbit wear times calculated from a step-based algorithm and a novel algorithm that incorporates steps and heart rate (HR).

Results

We enrolled 15 subjects (67% female, mean age 68 years). Relative to AGH, Fitbit, on average, overestimated steps by 39% and sedentary time by 37% and underestimated MVPA by 5 minutes. Relative to AGH, AGW overestimated steps 116%, underestimated sedentary time by 66%, and captured 281 additional MVPA minutes. The step-based wear time Fitbit algorithm captured 14% less wear time than the HR-based algorithm.

Conclusions

Fitbit overestimates steps and underestimates MVPA in knee OA subjects. Cut-offs validated for AGW should be developed to support the use of AGW for PA assessment. The HR-based Fitbit algorithm captured more wear time than the step-based algorithm. These data provide critical insight for researchers planning to use commercially-available accelerometers in pragmatic studies.

]]>
<![CDATA[The effect of 2 walking programs on aerobic fitness, body composition, and physical activity in sedentary office employees]]> https://www.researchpad.co/article/5c59ff0cd5eed0c4841359cb

Purpose

The present study examined changes in body composition, maximum oxygen uptake, and physical activity in sedentary office employees prescribed with two different walking programs during a 10-week intervention.

Methods

68 sedentary employees were randomly assigned to one of three groups: multiple bouts of walking (n = 24 (5 male, 19 female) Age = 46±9, BMI = 30.5±5.78 kg/m2), continuous walking (n = 22 (6 male, 16 female) Age = 48±9, BMI = 30.6±6.2 kg/m2) and the control group (n = 22 (5 male, 17 female) Age = 42±10, BMI = 27.5±5.23 kg/m2). Dual-energy X-ray absorptiometry (iDXA) assessed body composition and a Bruce protocol treadmill test assessed aerobic fitness at baseline and week 11. At baseline, week 6 and week 11 a waist worn accelerometer measured physical activity and sedentary behavior. Physical activity was measured throughout the program with a wrist worn accelerometer.

Results

The results from the mixed-design ANOVA show that fat mass (p < .000) and fat percentage (p < .000) decreased for all three groups as a main effect of time. Sedentary behavior did not change (p>0.05) for all three groups. Moderate intensity physical activity increased significantly from pre-test to week 6 (p<0.05), then decreased from week 6 to post-test (p<0.05), with no significant changes observed from pre-test to post-test (p>0.05) for all groups. No changes in VO2 were observed (p>0.05) for all groups.

Conclusions

Continuous or intermittent walking activity produce similar benefits on body weight, fat mass and body fat percentage in sedentary employees. Meanwhile, intermittent walking allowed these sedentary employees to increase lean mass and fat free mass. Intermittent walking could provide at least similar benefits on body composition compared to a continuous walking program.

]]>
<![CDATA[Carpal tunnel release with versus without flexor retinaculum reconstruction for carpal tunnel syndrome at short- and long-term follow up—A meta-analysis of randomized controlled trials]]> https://www.researchpad.co/article/5c58d617d5eed0c4840315cb

Background

Carpal tunnel syndrome is a common neuropathy disorder for which surgical treatment consists of release and reconstruction of the flexor retinaculum. Reports of postoperative clinical outcomes after carpal tunnel release with or without flexor retinaculum reconstruction in several studies are controversial. This meta-analysis aimed to compare the efficacy and safety of carpal tunnel release with or without flexor retinaculum reconstruction.

Methods

The PubMed, EMBASE, Web of Science, Ovid, Cochrane Library and Clinical Tri Org databases were searched for randomized controlled trials that compared carpal release with and without transverse carpal ligament reconstruction for carpal tunnel syndrome. Outcomes included postoperative Boston Carpal Tunnel Questionnaire Symptom Severity Scale (SSS), Functional Status Scale (FSS), grip strength and complications. The follow-up time was categorized into short-term (0-3mon) and long-term(>3mon).

Results

A total of 7 studies with 613 patients met the inclusion criteria and were analyzed in detail. Statistical analysis showed no significant difference between two groups on postoperative long-term grip strength (MD 5.85, 95% CI -1.05 to 12.76) long-term SSS (MD -0.31, 95% CI -0.75 to 0.13) and occurrence of complications (RR 1.14, 95% CI 0.84 to 1.54), whereas statistically significant difference was found between groups regarding short-term grip strength (MD 1.51, 95% CI 0.86 to 2.17) and long-term FSS (MD -0.34, 95% CI -0.47 to -0.21).

Conclusion

Carpal tunnel release with flexor retinaculum reconstruction for carpal tunnel syndrome may result in improved long-term functional status while there’s no advantage regarding grip strength, symptom severity and safety over individual carpal tunnel release in short- and long-term outcomes.

]]>
<![CDATA[Leg muscle strength is reduced and is associated with physical quality of life in Antineutrophil cytoplasmic antibody-associated vasculitis]]> https://www.researchpad.co/article/5c61e902d5eed0c48496f649

Objective

Physical quality of life is reduced in ANCA-associated vasculitis (AAV). This study aims to investigate whether this may be explained by reduced muscle strength and physical activity resulting from disease damage and steroid myopathy.

Methods

Forty-eight AAV patients were sequentially included from the outpatient clinic. Patients in different stages of disease and treatment underwent measurements of muscle strength and anthropometric parameters. Patients filled in physical activity (Baecke) and quality of life questionnaires (RAND-36) and carried an accelerometer for a week. Muscle strength and physical activity were compared to quality of life, prednisolone use and disease duration.

Results

Most AAV patients had lower knee extension (76%) and elbow flexion (67%) forces than expected based on healthy norms. Also, physical (P<0.001) and mental (P = 0.01) quality of life were significantly reduced compared to healthy norm values. Lower knee extension force (P = 0.009), younger age <70 (P<0.001) and relapse of vasculitis (P = 0.003) were associated with lower age-adjusted physical quality of life. Lower Baecke index (P = 0.006), higher prednisolone dose (P = 0.005) and ENT involvement (P = 0.006) were associated with lower age-adjusted mental quality of life. Leg muscle strength showed no association with current or cumulative prednisolone use. Disease duration was longer in patients with knee extension force below healthy norms (P = 0.006).

Conclusion

Knee extension force and physical activity are positively associated with quality of life in AAV. Knee extension force decreases with longer disease duration, suggesting that disease- and treatment-related damage have a cumulative negative effect on muscle strength.

]]>
<![CDATA[Robotic hand illusion with tactile feedback: Unravelling the relative contribution of visuotactile and visuomotor input to the representation of body parts in space]]> https://www.researchpad.co/article/5c521842d5eed0c484797949

The rubber hand illusion describes a phenomenon in which participants experience a rubber hand as being part of their body by the synchronous application of visuotactile stimulation to the real and the artificial limb. In the recently introduced robotic hand illusion (RobHI), a robotic hand is incorporated into one’s body representation due to the integration of synchronous visuomotor information. However, there are no setups so far that combine visuotactile and visuomotor feedback, which is expected to unravel mechanisms that cannot be detected in experimental designs applying this information in isolation. We developed a robotic hand, controlled by a sensor glove and equipped with pressure sensors, and varied systematically and separately the synchrony for motor feedback (MF) and tactile feedback (TF). In Experiment 1, we implemented a ball-grasping task and assessed the perceived proprioceptive drift of one’s own hand as a behavioral measure of the spatial calibration of body coordinates as well as explicit embodiment experiences by a questionnaire. Results revealed significant main effects of both MF and TF for proprioceptive drift data, but we only observed main effects for MF on perceived embodiment. Furthermore, for the proprioceptive drift we found that synchronous feedback in one factor compensates for asynchronous feedback in the other. In Experiment 2, including a new sample of naïve participants, we further explored this finding by adding unimodal conditions, in which we manipulated the presence or absence of MF and/or TF. These findings replicated the results from Experiment 1 and we further found evidence for a supper-additive multisensory effect on spatial body representation caused by the presence of both factors. Results on conscious body perception were less consistent across both experiments. The findings indicate that sensory and motor input equally contribute to the representation of spatial body coordinates which for their part are subject to multisensory enhancing effects. The results outline the potential of human-in-the-loop approaches and might have important implications for clinical applications such as for the future design of robotic prostheses.

]]>