ResearchPad - bending Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Exploring non-assembly 3D printing for novel compliant surgical devices]]> In minimally invasive surgery, maneuverability is usually limited and a large number of degrees of freedom (DOF) is highly demanded. However, increasing the DOF usually means increasing the complexity of the surgical instrument leading to long fabrication and assembly times. In this work, we propose the first fully 3D printed handheld, multi-steerable device. The proposed device is mechanically actuated, and possesses five serially controlled segments. We designed a new compliant segment providing high torsion and axial stiffness as well as a low bending stiffness by merging the functions of four helicoids and a continuum backbone. Compliant segments were combined to form the compliant shaft of the new device. In order to control this compliant shaft, a control handle was designed that mimics the shaft structure. A prototype called the HelicoFlex was built using only three 3D printed parts. HelicoFlex, with its 10 degrees of freedom, showed a fluid motion in performing single and multi-curved paths. The multi-steerable instrument was 3D printed without any support material in the compliant shaft itself. This work contributes to enlarge the body of knowledge regarding how additive manufacturing could be used in the production of multi-steerable surgical instruments for personalized medicine.

<![CDATA[In-silico pre-clinical trials are made possible by a new simple and comprehensive lumbar belt mechanical model based on the Law of Laplace including support deformation and adhesion effects]]>

Lower back pain is a major public health problem. Despite claims that lumbar belts change spinal posture due to applied pressure on the trunk, no mechanical model has yet been published to prove this treatment. This paper describes a first model for belt design, based on the one hand on the mechanical properties of the fabrics and the belt geometry, and on the other hand on the trunk geometrical and mechanical description. The model provides the estimation of the pressure applied to the trunk, and a unique indicator of the belt mechanical efficiency is proposed: pressure is integrated into a bending moment characterizing the belt delordosing action on the spine. A first in-silico clinical study of belt efficiency for 15 patients with 2 different belts was conducted. Results are very dependent on the body shape: in the case of high BMI patients, the belt effect is significantly decreased, and can be even inverted, increasing the lordosis. The belt stiffness proportionally increases the pressure applied to the trunk, but the influence of the design itself on the bending moment is clearly outlined. Moreover, the belt/trunk interaction, modeled as sticking contact and the specific way patients lock their belts, dramatically modifies the belt action. Finally, even if further developments and tests are still necessary, the model presented in this paper seems suitable for in-silico pre-clinical trials on real body shapes at a design stage.

<![CDATA[Older birds have better feathers: A longitudinal study on the long-distance migratory Sand Martin, Riparia riparia]]>

Feather quality is of critical importance to long-distance migratory birds. Here, we report a series of analyses of a unique data set encompassing known-age individuals of the long-distance migratory Sand Martin (Riparia riparia). Sampling over 17 years along the Tisza River, eastern Hungary, has resulted in the recapture of numerous individuals enabling longitudinal and cross-sectional investigation of the role of adaptation to variable environmental conditions on feather morphology. We show that older individuals tend to possess better quality feathers, measured using bending stiffness, feather length and thickness as proxies. Bending stiffness and feather thickness do not change with individual age, in contrast with increases in feather length and declines in daily feather growth versus age of individual alongside moult duration. Individuals who live to older ages tend to have similar, or higher, feather growth rates and better feather quality than individuals captured at younger ages. Thus, on the basis of strong selection against individuals with slow feather growth, as seen in other species of swallows and martins, which causes a delay in moult completion, the results of this analysis highlight the potential cost of producing better quality feathers when this depends on moult duration. Feather length also does change during the lifetime of the individual and thus enabled us to further investigate influence of individual and environmental conditions during the moult. The results of this analysis provide important insights on the adaptive significance of these traits, and the potential use of physical characteristics in unravelling the reasons why long distance migratory bird populations are in global decline.

<![CDATA[The importance of mechanical constraints for proper polarization and psuedo-cleavage furrow generation in the early Caenorhabditis elegans embryo]]>

Intracellular polarization, where a cell specifies a spatial axis by segregation of specific factors, is a fundamental biological process. In the early embryo of the nematode worm Caenorhabditis elegans (C. elegans), polarization is often accompanied by deformations of the cortex, a highly contractile structure consisting of actin filaments cross-linked by the motor protein myosin (actomyosin). It has been suggested that the eggshell surrounding the early embryo plays a role in polarization although its function is not understood. Here we develop a mathematical model which couples a reaction-diffusion model of actomyosin dynamics with a phase field model of the cell cortex to implicitly track cell shape changes in the early C. elegans embryo. We investigate the potential rigidity effect of the geometric constraint imposed by the presence and size of the eggshell on polarization dynamics. Our model suggests that the geometric constraint of the eggshell is essential for proper polarization and the size of the eggshell also affects the dynamics of polarization. Therefore, we conclude that geometric constraint on a cell might affect the dynamics of a biochemical process.

<![CDATA[A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels]]>

Animal locomotion is mediated by a sensory system referred to as proprioception. Defects in the proprioceptive coordination of locomotion result in uncontrolled and inefficient movements. However, the molecular mechanisms underlying proprioception are not fully understood. Here, we identify two transient receptor potential cation (TRPC) channels, trp-1 and trp-2, as necessary and sufficient for proprioceptive responses in C. elegans head steering locomotion. Both channels are expressed in the SMDD neurons, which are required and sufficient for head bending, and mediate coordinated head steering by sensing mechanical stretches due to the contraction of head muscle and orchestrating dorsal head muscle contractions. Moreover, the SMDD neurons play dual roles to sense muscle stretch as well as to control muscle contractions. These results demonstrate that distinct locomotion patterns require dynamic and homeostatic modulation of feedback signals between neurons and muscles.

<![CDATA[Push Force Analysis of Anchor Block of the Oil and Gas Pipeline in a Single-Slope Tunnel Based on the Energy Balance Method]]>

In this paper, a single-slope tunnel pipeline was analysed considering the effects of vertical earth pressure, horizontal soil pressure, inner pressure, thermal expansion force and pipeline—soil friction. The concept of stagnation point for the pipeline was proposed. Considering the deformation compatibility condition of the pipeline elbow, the push force of anchor blocks of a single-slope tunnel pipeline was derived based on an energy method. Then, the theoretical formula for this force is thus generated. Using the analytical equation, the push force of the anchor block of an X80 large-diameter pipeline from the West—East Gas Transmission Project was determined. Meanwhile, to verify the results of the analytical method, and the finite element method, four categories of finite element codes were introduced to calculate the push force, including CAESARII, ANSYS, AutoPIPE and ALGOR. The results show that the analytical results agree well with the numerical results, and the maximum relative error is only 4.1%. Therefore, the results obtained with the analytical method can satisfy engineering requirements.

<![CDATA[Characterization of interfragmentary motion associated with common osteosynthesis devices for rat fracture healing studies]]>

Rat models are widely used in preclinical studies investigating fracture healing. The interfragmentary movement at a fracture site is critical to the course of healing and therefore demands definition in order to aptly interpret the experimental results. Estimation of this movement requires knowledge of the fixation stiffness and loading. The characteristic loading for the rat femur has been estimated, but the stiffness of fixation used in rat studies has yet to be fully described. This study aimed to determine the 6 degree of freedom stiffness of four commonly used implants, two external fixators (RatExFix and UlmExFix), a locking plate, and a locking intramedullary nail, in all degrees of freedom and estimate the interfragmentary movement under specific physiological loads. The external fixator systems allow the greatest movement. Mounted 45° anterolateral on the femur, the RatExFix allows an average of 0.88 mm of motion in each anatomic direction while the stiffer UlmExFix allows about 0.6 mm of motion. The nail is far stiffer than the other implants investigated while the plate allows movement of an intermediate magnitude. Both the nail and plate demonstrate higher axial than shear stiffness. The relatively large standard deviations in external fixator shear motion imply strong dependence on bone axis alignment across the gap and the precise orientation of the specimen relative to the loading. The smaller standard deviation associated with the nail and plate results from improved alignment and minimization of the influence of rotational positioning of the specimen due to the reduced implant eccentricity relative to the specimen axis. These results show that the interfragmentary movement is complex and varies significantly between fixation devices but establishes a baseline for the evaluation of the results of different studies.

<![CDATA[Trunk kinematics and low back pain during pruning among vineyard workers—A field study at the Chateau Larose-Trintaudon]]>

The prevalence of low back disorders is dramatically high in viticulture. Field measurements that objectively quantify work exposure can provide information on the relationship between the adopted trunk postures and low back pain. The purposes of the present study were three-fold (1) to carry out a kinematics analysis of vineyard-workers’ pruning activity by extracting the duration of bending and rotation of the trunk, (2) to question separately the relationship between the duration of forward bending or trunk rotation with low back pain intensity and pressure pain sensitivity and (3) to question the relationship between the combined duration of forward bending and trunk rotation on low back pain intensity and pressure pain sensitivity. Fifteen vineyard-workers were asked to perform pruning activity for 12 minutes with a wireless triaxial accelerometer placed on their trunk. Kinematic analysis of the trunk showed that vineyard-workers spent more than 50% of the time with the trunk flexed greater than 30° and more than 20% with the trunk rotated greater than 10°. These results show that pruning activity lead to the adoption of forward bended and rotated trunk postures that could significantly increase the risk of work related musculoskeletal disorders in the low back. However, this result was mitigated by the observation of an absence of significant association between the duration of forward bending and trunk rotation with low back pain intensity or pressure pain sensitivity. Even if prospective field measurements and studies assessing the effects of low back pain confounders are needed, this field study provides new genuine information on trunk kinematics during pruning activity.

<![CDATA[Biomechanics of the Peacock’s Display: How Feather Structure and Resonance Influence Multimodal Signaling]]>

Courtship displays may serve as signals of the quality of motor performance, but little is known about the underlying biomechanics that determines both their signal content and costs. Peacocks (Pavo cristatus) perform a complex, multimodal “train-rattling” display in which they court females by vibrating the iridescent feathers in their elaborate train ornament. Here we study how feather biomechanics influences the performance of this display using a combination of field recordings and laboratory experiments. Using high-speed video, we find that train-rattling peacocks stridulate their tail feathers against the train at 25.6 Hz, on average, generating a broadband, pulsating mechanical sound at that frequency. Laboratory measurements demonstrate that arrays of peacock tail and train feathers have a broad resonant peak in their vibrational spectra at the range of frequencies used for train-rattling during the display, and the motion of feathers is just as expected for feathers shaking near resonance. This indicates that peacocks are able to drive feather vibrations energetically efficiently over a relatively broad range of frequencies, enabling them to modulate the feather vibration frequency of their displays. Using our field data, we show that peacocks with longer trains use slightly higher vibration frequencies on average, even though longer train feathers are heavier and have lower resonant frequencies. Based on these results, we propose hypotheses for future studies of the function and energetics of this display that ask why its dynamic elements might attract and maintain female attention. Finally, we demonstrate how the mechanical structure of the train feathers affects the peacock’s visual display by allowing the colorful iridescent eyespots–which strongly influence female mate choice–to remain nearly stationary against a dynamic iridescent background.

<![CDATA[Experimental Study of the Bending Properties and Deformation Analysis of Web-Reinforced Composite Sandwich Floor Slabs with Four Simply Supported Edges]]>

Web-reinforced composite sandwich panels exhibit good mechanical properties in one-way bending, but few studies have investigated their flexural behavior and deformation calculation methods under conditions of four simply supported edges. This paper studies the bending performance of and deformation calculation methods for two-way web-reinforced composite sandwich panels with different web spacing and heights. Polyurethane foam, two-way orthogonal glass-fiber woven cloth and unsaturated resin were used as raw materials in this study. Vacuum infusion molding was used to prepare an ordinary composite sandwich panel and 5 web-reinforced composite sandwich panels with different spacing and web heights. The panels were subjected to two-way panel bending tests with simple support for all four edges. The mechanical properties of these sandwich panels during the elastic stage were determined by applying uniformly distributed loads. The non-linear mechanical characteristics and failure modes were obtained under centrally concentrated loading. Finally, simulations of the sandwich panels, which used the mechanical model established herein, were used to deduce the formulae for the deflection deformation for this type of sandwich panel. The experimental results show that webs can significantly improve the limit bearing capacity and flexural rigidity of sandwich panels, with smaller web spacing producing a stronger effect. When the web spacing is 75 mm, the limit bearing capacity is 4.63 times that of an ordinary sandwich panel. The deduced deflection calculation formulae provide values that agree well with the measurements (maximum error <15%). The results that are obtained herein can provide a foundation for the structural design of this type of panel.

<![CDATA[Strain Distribution in Root Surface Dentin of Maxillary Central Incisors during Lateral Compaction]]>


To precisely quantify the circumferential strains created along the radicular dentin of maxillary incisors during a simulated clinical procedure of lateral compaction.


Six miniature strain gauges were bonded on the roots of fourteen recently extracted maxillary central incisors that were subjected to root canal instrumentation. The strain gauges were bonded at three levels (apical, middle, and coronal) and four aspects (buccal, lingual, mesial, and distal) of the roots. Each tooth was embedded in a PVC cylinder containing polyvinyl-siloxane impression material. Root filling was then performed by simulating the clinical procedure of lateral compaction using nickel-titanium finger spreaders. The force applied to the spreader and the strains developing in the surface root dentin were continuously recorded at a frequency of 10 Hz.


The highest strains that developed during lateral compaction were in the mesial and distal aspects at the apical level of the root. The magnitudes of the maximal mesial/distal strains at the apical as well as the mid-root levels were approximately 2.5–3 times higher than those at the buccal/lingual aspects (p = 0.041). The strains decreased significantly (p<0.04) from the apical through the mid-root levels to the coronal level, yielding gradients of 2.5- and 6-fold, respectively. The mesial and distal strains were consistently tensile and did not differ significantly; however, the buccal strains were generally 35–65% higher than the lingual strains (p = 0.078). Lateral compaction resulted in the gradual build-up of residual strains, resulting in generation of a 'stair-step' curve. These strains declined gradually and almost completely disappeared after 1000 sec.


With proper mounting of several miniature strain gauges at various levels and aspects of the root, significant circumferential strains can be monitored under clinically relevant compaction forces. The residual strains at the end of lateral compaction are not stored in the dentin but decrease gradually to negligible levels.

<![CDATA[A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties]]>

The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep that may help to refine the understanding of parallel in vitro experiments and that can be used to predict when mechanical failure occurs. Anisotropic hyperelastic material properties were assigned to the annulus fibrosus and factorial optimization analyses were performed to find out the optimal parameters of the ground substance and of the collagen fibers. For the ground substance of the annulus fibrosus the investigation was based on experimental data taken from the literature, while for the collagen fibers tensile tests on annulus specimens were conducted. Flexibility analysis in flexion-extension, lateral bending and axial rotation were conducted. Different material properties for the anterior, lateral and posterior regions of the annulus were found. The posterior part resulted the stiffest region in compression whereas the anterior one the stiffest region in tension. Since the flexibility outcomes were in a good agreement with the literature data, we considered this model suitable to be used in conjunction with in vitro and in vivo tests to investigate the mechanical behaviour of the ovine lumbar disc.

<![CDATA[Invagination of Ectodermal Placodes Is Driven by Cell Intercalation-Mediated Contraction of the Suprabasal Tissue Canopy]]>

Ectodermal organs such as teeth, hair follicles, and mammary glands begin their development as placodes. These are local epithelial thickenings that invaginate into mesenchymal space. There is currently little mechanistic understanding of the cellular processes driving the early morphogenesis of these organs and of why they lead to invagination rather than simple tissue thickening. Here, we show that placode invagination depends on horizontal contraction of superficial layers of cells that form a shrinking and thickening canopy over underlying epithelial cells. This contraction occurs by cell intercalation and is mechanically coupled to the basal layer by peripheral basal cells that extend apically and centripetally while remaining attached to the basal lamina. This process is topologically analogous to well-studied apical constriction mechanisms, but very different from them both in scale and molecular mechanism. Mechanical cell–cell coupling is propagated through the tissue via E-cadherin junctions, which in turn depend on tissue-wide tension. We further present evidence that this mechanism is conserved among different ectodermal organs and is, therefore, a novel and fundamental morphogenetic motif widespread in embryonic development.

<![CDATA[In vitro analysis of the segmental flexibility of the thoracic spine]]>

Basic knowledge about the thoracic spinal flexibility is limited and to the authors’ knowledge, no in vitro studies have examined the flexibility of every thoracic spinal segment under standardized experimental conditions using pure moments. In our in vitro study, 68 human thoracic functional spinal units including the costovertebral joints (at least n = 6 functional spinal units per segment from T1-T2 to T11-T12) were loaded with pure moments of ±7.5 Nm in flexion/extension, lateral bending, and axial rotation in a custom-built spine tester to analyze range of motion (ROM) and neutral zone (NZ). ROM and NZ showed symmetric motion behavior in all loading planes. In each loading direction, the segment T1-T2 exhibited the highest ROM. In flexion/extension, the whole thoracic region, with exception of T1-T2 (14°), had an average ROM between 6° and 8°. In lateral bending, the upper thoracic region (T1-T7) was, with an average ROM between 10° and 12°, more flexible than the lower thoracic region (T7-T12) with an average ROM between 8° and 9°. In axial rotation, the thoracic region offered the highest overall flexibility with an average ROM between 10° and 12° in the upper and middle thoracic spine (T1-T10) and between 7° and 8° in the lower thoracic spine (T10-T12), while a trend of continuous decrease of ROM could be observed in the lower thoracic region (T7-T12). Comparing these ROM values with those in literature, they agree that ROM is lowest in flexion/extension and highest in axial rotation, as well as decreasing in the lower segments in axial rotation. Differences were found in flexion/extension and lateral bending in the lower segments, where, in contrast to the literature, no increase of the ROM from superior to inferior segments was found. The data of this in vitro study could be used for the validation of numerical models and the design of further in vitro studies of the thoracic spine without the rib cage, the verification of animal models, as well as the interpretation of already published human in vitro data.

<![CDATA[A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion]]>

This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results.

<![CDATA[Tibial revision knee arthroplasty with metaphyseal sleeves: The effect of stems on implant fixation and bone flexibility]]>


Revision total knee arthoplasty often requires modular implants to treat bone defects of varying severity. In some cases, it may not be clear which module size and implant combination (e.g. sleeve and stem) should be chosen for a specific defect. When balancing implant stability and osseointegration against stress-shielding, it is important to choose an appropriate implant combination in order to match the given level of bone loss. Therefore, the necessity of stems in less extensive tibial defects and the advantage of different stems (lengths and stiffnesses) in combination with large metaphyseal sleeves on implant fixation and bone flexibility using a modular tibial revision knee system, were analyzed.

Materials and methods

Four different stem combinations for a tibial revision implant (Sigma TC3, DePuy) were compared to an intact bone. Standardized implantation with n = 4 synthetic tibial bones was performed after generating an Anderson Orthopaedic Research Institute (AORI) Type T1 bone defect. Axial torques around the longitudinal stem axis and varus-valgus torques were separately applied to the implant. Micromotions of bone and implant were tracked using a digital image correlation system to calculate relative micromotions at the implant-bone-interface and bone deformation.


Overall, using stems reduced the proximal micromotions of tray and sleeve compared to no stem, while reducing bone deformation proximally at the same time, indicating some potential for proximal stress-shielding compared to no stem. The potential for increased proximal stress-shield due to reduced proximal deformation appeared to be greater when using the longer stems. The location of lowest relative micromotions was also more distal when using long stems as opposed to short stems. A short stem (especially a smaller diameter short stem which still achieves diaphyseal fixation) displayed less potential for stress-shielding, but greater bone deformation distal to the tip of the stem than in the natural model.


In the case of tibial revision implants with metaphyseal sleeves in a simple fully contained Type I defect, the absence of a stem provides for more natural bone deformation. However, adding a stem reduces overall relative micromotions, while introducing some risk of proximal stress-shielding due to increased diaphyseal fixation. Increasing stem length intensifies this effect. Short stems offered a balance between reduced micromotions and more proximal bone deformation that reduced the potential for stress-shielding when compared to long stems. A short stem with slightly smaller diameter (simulating a less stiff stem which still has diaphyseal fixation) increased the proximal bone deformation, but also tended to increase the bone deformation even further at the distal stem’s tip.


In conclusion, further investigation should be conducted on fully contained Type I defects and the addition of a stem to offer better initial stability, taking into account stem length (i.e. shorter or more flexible stems) to support metaphyseal fixation and allowing bending found in intact bone. In addition, further study into more extensive tibial defects is required to determine if the stability/micromotion trends observed in this study with stems and sleeves in Type I defects still apply in cases of extensive proximal bone loss.

<![CDATA[The Association between Elevated Levels of Peripheral Serotonin and Its Metabolite – 5-Hydroxyindoleacetic Acid and Bone Strength and Metabolism in Growing Rats with Mild Experimental Chronic Kidney Disease]]>

Chronic kidney disease (CKD) is associated with disturbances in bone strength and metabolism. The alterations of the serotonergic system are also observed in CKD. We used the 5/6 nephrectomy model of CKD to assess the impact of peripheral serotonin and its metabolite– 5-hydroxyindoleacetic acid on bone biomechanical properties and metabolism in growing rats. The animals were sacrificed one and three months after nephrectomy. Biomechanical properties were determined on two different bone types: the cortical bone of the femoral diaphysis using three-point bending test and the mixed cortico-trabecular bone by the bending test of the femoral neck. Biomechanical tests revealed preserved cortical bone strength, whereas work to fracture (W) and yield load (Fy) of mixed cortico-trabecular bone were significantly lower in CKD compared to controls. Serum activity of alkaline phosphatase (ALP), a bone formation marker, and tartrate-resistant acid phosphatase (TRACP 5b) reflecting bone resorption, were similar in CKD and controls. ALP was associated with lower femoral stiffness and strength, and higher displacements and W. TRACP 5b was inversely associated with cortical Fu and W. The elevated peripheral serotonergic system in CKD was: inversely associated with stiffness but positively related to the displacements and W; inversely associated with cortical Fy but positively correlated with this parameter in cortico-trabecular bone; inversely associated with ALP in controls but positively correlated with this biomarker in CKD animals. In conclusion, this study demonstrates the distinct effect of mild degree of CKD on bone strength in rapidly growing rats. The impaired renal function affects the peripheral serotonin metabolism, which in turn may influence the strength and metabolism of bones in these rats. This relationship seems to be beneficial on the biomechanical properties of the cortico-trabecular bone, whereas the cortical bone strength can be potentially reduced.

<![CDATA[HIF Stabilization Weakens Primary Cilia]]>

Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Defective cilia and ciliary-associated proteins have been shown to result in cystic diseases. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because the mechanical properties of cilia impact their response to applied flow, we asked how the stiffness of cilia can be controlled pharmacologically. We performed an experiment subjecting cilia to Taxol (a microtubule stabilizer) and CoCl2 (a HIF stabilizer to model hypoxia). Madin-Darby Canine Kidney (MDCK) cells were selected as our model system. After incubation with a selected pharmacological agent, cilia were optically trapped and the bending modulus measured. We found that HIF stabilization significantly weakens cilia. These results illustrate a method to alter the mechanical properties of primary cilia and potentially alter the flow sensing properties of cilia.

<![CDATA[The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader]]>

Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader.

<![CDATA[Structural Basis for Elastic Mechanical Properties of the DNA Double Helix]]>

In this article, we investigate the principal structural features of the DNA double helix and their effects on its elastic mechanical properties. We develop, in the pursuit of this purpose, a helical continuum model consisting of a soft helical core and two stiff ribbons wrapping around it. The proposed model can reproduce the negative twist-stretch coupling of the helix successfully as well as its global stretching, bending, and torsional rigidities measured experimentally. Our parametric study of the model using the finite element method further reveals that the stiffness of phosphate backbones is a crucial factor for the counterintuitive overwinding behavior of the duplex and its extraordinarily high torsional rigidity, the major-minor grooves augment the twist-stretch coupling, and the change of the helicity might be responsible for the transition from a negative to a positive twist-stretching coupling when a tensile force is applied to the duplex.