ResearchPad - biochemical-techniques-resources https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Cell Atlas technologies and insights into tissue architecture]]> https://www.researchpad.co/article/elastic_article_9194 Since Robert Hooke first described the existence of ‘cells’ in 1665, scientists have sought to identify and further characterise these fundamental units of life. While our understanding of cell location, morphology and function has expanded greatly; our understanding of cell types and states at the molecular level, and how these function within tissue architecture, is still limited. A greater understanding of our cells could revolutionise basic biology and medicine. Atlasing initiatives like the Human Cell Atlas aim to identify all cell types at the molecular level, including their physical locations, and to make this reference data openly available to the scientific community. This is made possible by a recent technology revolution: both in single-cell molecular profiling, particularly single-cell RNA sequencing, and in spatially resolved methods for assessing gene and protein expression. Here, we review available and upcoming atlasing technologies, the biological insights gained to date and the promise of this field for the future.

]]>
<![CDATA[A biochemical comparison of the lung, colonic, brain, renal, and ovarian cancer cell lines using <sup>1</sup>H-NMR spectroscopy]]> https://www.researchpad.co/article/Nf9e958e6-47b5-498d-afb8-80cfab8461fe Cancer cell lines are often used for cancer research. However, continuous genetic instability-induced heterogeneity of cell lines can hinder the reproducibility of cancer research. Molecular profiling approaches including transcriptomics, chromatin modification profiling, and proteomics are used to evaluate the phenotypic characteristics of cell lines. However, these do not reflect the metabolic function at the molecular level. Metabolic phenotyping is a powerful tool to profile the biochemical composition of cell lines. In the present study, 1H-NMR spectroscopy-based metabolic phenotyping was used to detect metabolic differences among five cancer cell lines, namely, lung (A549), colonic (Caco2), brain (H4), renal (RCC), and ovarian (SKOV3) cancer cells. The concentrations of choline, creatine, lactate, alanine, fumarate and succinate varied remarkably among different cell types. The significantly higher intracellular concentrations of glutathione, myo-inositol, and phosphocholine were found in the SKOV3 cell line relative to other cell lines. The concentration of glutamate was higher in both SKOV3 and RCC cells compared with other cell lines. For cell culture media analysis, isopropanol was found to be the highest in RCC media, followed by A549 and SKOV3 media, while acetone was the highest in A549, followed by RCC and SKOV3. These results demonstrated that 1H-NMR-based metabolic phenotyping approach allows us to characterize specific metabolic signatures of cancer cell lines and provides phenotypical information of cellular metabolism.

]]>
<![CDATA[MEHP interferes with mitochondrial functions and homeostasis in skeletal muscle cells]]> https://www.researchpad.co/article/Na411c472-0723-403f-89af-3381276a1e18

Abstract

Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer frequently leached out from polyvinyl chloride (PVC) products and is quickly metabolized to its monoester equivalent mono(2-ethylhexyl) phthalate (MEHP) once enters organisms. Exposure to DEHP/MEHP through food chain intake has been shown to modified metabolism but its effect on the development of metabolic myopathy of skeletal muscle (SKM) has not been revealed so far. Here, we found that MEHP repressed myogenic terminal differentiation of proliferating myoblasts (PMB) and confluent myoblasts (CMB) but had weak effect on this process once it had been initiated. The transition of mitochondria (MITO) morphology from high efficient filamentary network to low efficient vesicles was triggered by MEHP, implying its negative effects on MITO functions. The impaired MITO functions was further demonstrated by reduced MITO DNA (mtDNA) level and SDH enzyme activity as well as highly increased reactive oxygen species (ROS) in cells after MEHP treatment. The expression of metabolic genes, including PDK4, CPT1b, UCP2, and HO1, was highly increased by MEHP and the promoters of PDK4 and CPT1b were also activated by MEHP. Additionally, the stability of some subunits in the oxidative phosphorylation system (OXPHOS) complexes was found to be reduced by MEHP, implying defective oxidative metabolism in MITO and which was confirmed by repressed palmitic acid oxidation in MEHP-treated cells. Besides, MEHP also blocked insulin-induced glucose uptake. Taken together, our results suggest that MEHP is inhibitory to myogenesis and is harmful to MITO functions in SKM, so its exposure should be avoided or limited.

]]>