ResearchPad - biochemistry-and-molecular-biology Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Vps35 Deficiency Impairs Cdk5/p35 Degradation and Promotes the Hyperphosphorylation of Tau Protein in Retinal Ganglion Cells]]> Vacuolar protein sorting 35 (Vps35) mutations and protein dysfunction have been linked to the hyperphosphorylation and accumulation of tau protein in a number of central neurodegenerative disorders. The aims of the present study were to investigate the mechanism underlying the tau hyperphosphorylation caused by Vps35 deficiency.MethodsThe cells used in this study were primary retinal ganglion cells (RGCs). The rat retinal glutamate excitotoxicity model was used in vivo. Fresh retinal tissues or eyeballs were collected at different time points. The expression and interactions of Vps35, Cdk5/p35, tau hyperphosphorylation, LAMP1, EEA1 and UBE1 in RGCs were studied by immunofluorescence staining, Western blotting, and immunoprecipitation.ResultsThe downregulation and overexpression of Vps35 increased and decreased the expression of p35 and tau hyperphosphorylation, respectively. More important, roscovitine, a Cdk5 inhibitor, could effectively decrease the hyperphosphorylated tau level induced by Vps35 deficiency. Furthermore, this study confirmed that the inhibition of Vps35 could increase the activity of Cdk5/p35 by affecting the lysosomal degradation of p35 and lead to the degeneration of RGCs.ConclusionsThese findings demonstrate the possibility that Cdk5/p35 acts as a “cargo” of Vps35 and provide new insights into the pathogenesis of RGC degeneration caused by hyperphosphorylated tau protein. Vps35 is a potential target for basic research and clinical treatment of RGC degeneration in many ocular diseases such as glaucoma. ]]> <![CDATA[The Effect of Prostaglandin Analogue Bimatoprost on Thyroid-Associated Orbitopathy]]>


We characterize the effect of bimatoprost on orbital adipose tissue in thyroid-associated orbitopathy (TAO) with clinicopathologic correlation.


Orbital adipose-derived stem cells (OASCs) from types 1 and 2 TAO and control patients with and without exposure to 1 μm bimatoprost were examined via immunohistochemistry, RT-PCR, and Western blot for cell viability, migration capacity, lipid content, adipocyte morphology, mitochondrial content, and levels of adipogenic markers. A retrospective chart review was performed for clinicopathologic correlation. In mice, optical coherence tomography and pattern electroretinography were performed at baseline and at 1 month following a retrobulbar injection of bimatoprost, followed by orbital exenteration for histopathologic examination.


Types 1 and 2 TAO-derived cells had a significantly higher migration capacity and lipid content than those of healthy controls. With the addition of bimatoprost, types 1 and 2 TAO and control adipocytes exhibited a significant decrease in lipid content with morphologic transformation into smaller and multilocular lipid droplets, and an increase in mitochondrial load and UCP-1 expression consistent with an increase in brown adipose tissue turnover. Retrobulbar injection of bimatoprost in mice did not alter the gross morphology, retinal thickness, or ganglion cell function in vivo.


Bimatoprost inhibits adipogenesis in OASCs and upregulates pathways involved in the browning of adipocytes. Furthermore, retrobulbar injection of bimatoprost is tolerated without immediate adverse effects in mice. Our results suggest a potential future application of prostaglandin analogues in the treatment of TAO.