ResearchPad - biological-physics https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model]]> https://www.researchpad.co/article/elastic_article_8210 Memory has a great impact on the evolution of every process related to human societies. Among them, the evolution of an epidemic is directly related to the individuals' experiences. Indeed, any real epidemic process is clearly sustained by a non-Markovian dynamics: memory effects play an essential role in the spreading of diseases. Including memory effects in the susceptible-infected-recovered (SIR) epidemic model seems very appropriate for such an investigation. Thus, the memory prone SIR model dynamics is investigated using fractional derivatives. The decay of long-range memory, taken as a power-law function, is directly controlled by the order of the fractional derivatives in the corresponding nonlinear fractional differential evolution equations. Here we assume “fully mixed” approximation and show that the epidemic threshold is shifted to higher values than those for the memoryless system, depending on this memory “length” decay exponent. We also consider the SIR model on structured networks and study the effect of topology on threshold points in a non-Markovian dynamics. Furthermore, the lack of access to the precise information about the initial conditions or the past events plays a very relevant role in the correct estimation or prediction of the epidemic evolution. Such a “constraint” is analyzed and discussed.

]]>
<![CDATA[Impact of the infectious period on epidemics]]> https://www.researchpad.co/article/elastic_article_8194 The duration of the infectious period is a crucial determinant of the ability of an infectious disease to spread. We consider an epidemic model that is network based and non-Markovian, containing classic Kermack-McKendrick, pairwise, message passing, and spatial models as special cases. For this model, we prove a monotonic relationship between the variability of the infectious period (with fixed mean) and the probability that the infection will reach any given subset of the population by any given time. For certain families of distributions, this result implies that epidemic severity is decreasing with respect to the variance of the infectious period. The striking importance of this relationship is demonstrated numerically. We then prove, with a fixed basic reproductive ratio (R0), a monotonic relationship between the variability of the posterior transmission probability (which is a function of the infectious period) and the probability that the infection will reach any given subset of the population by any given time. Thus again, even when R0 is fixed, variability of the infectious period tends to dampen the epidemic. Numerical results illustrate this but indicate the relationship is weaker. We then show how our results apply to message passing, pairwise, and Kermack-McKendrick epidemic models, even when they are not exactly consistent with the stochastic dynamics. For Poissonian contact processes, and arbitrarily distributed infectious periods, we demonstrate how systems of delay differential equations and ordinary differential equations can provide upper and lower bounds, respectively, for the probability that any given individual has been infected by any given time.

]]>
<![CDATA[Emergence of power laws in noncritical neuronal systems]]> https://www.researchpad.co/article/elastic_article_8183 Experimental and computational studies provide compelling evidence that neuronal systems are characterized by power-law distributions of neuronal avalanche sizes. This fact is interpreted as an indication that these systems are operating near criticality, and, in turn, typical properties of critical dynamical processes, such as optimal information transmission and stability, are attributed to neuronal systems. The purpose of this Rapid Communication is to show that the presence of power-law distributions for the size of neuronal avalanches is not a sufficient condition for the system to operate near criticality. Specifically, we consider a simplistic model of neuronal dynamics on networks and show that the degree distribution of the underlying neuronal network may trigger power-law distributions for neuronal avalanches even when the system is not in its critical regime. To certify and explain our findings we develop an analytical approach based on percolation theory and branching processes techniques.

]]>
<![CDATA[Effects of distribution of infection rate on epidemic models]]> https://www.researchpad.co/article/Ncc290c22-f39f-4893-9281-6c11a800a8ea

A goal of many epidemic models is to compute the outcome of the epidemics from the observed infected early dynamics. However, often, the total number of infected individuals at the end of the epidemics is much lower than predicted from the early dynamics. This discrepancy is argued to result from human intervention or nonlinear dynamics not incorporated in standard models. We show that when variability in infection rates is included in standard susciptible-infected-susceptible (SIS) and susceptible-infected-recovered (SIR) models the total number of infected individuals in the late dynamics can be orders lower than predicted from the early dynamics. This discrepancy holds for SIS and SIR models, where the assumption that all individuals have the same sensitivity is eliminated. In contrast with network models, fixed partnerships are not assumed. We derive a moment closure scheme capturing the distribution of sensitivities. We find that the shape of the sensitivity distribution does not affect R0 or the number of infected individuals in the early phases of the epidemics. However, a wide distribution of sensitivities reduces the total number of removed individuals in the SIR model and the steady-state infected fraction in the SIS model. The difference between the early and late dynamics implies that in order to extrapolate the expected effect of the epidemics from the initial phase of the epidemics, the rate of change in the average infectivity should be computed. These results are supported by a comparison of the theoretical model to the Ebola epidemics and by numerical simulation.

]]>