ResearchPad - biological-tissue https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator]]> https://www.researchpad.co/article/elastic_article_13838 Cell-autonomous circadian clocks are transcriptional/translational feedback loops that co-ordinate almost all mammalian physiology and behaviour. Although their genetic basis is well understood, we are largely ignorant of the natural behaviour of clock proteins and how they work within these loops. This is particularly true for the essential transcriptional activator BMAL1. To address this, we created and validated a mouse carrying a fully functional knock-in allele that encodes a fluorescent fusion of BMAL1 (Venus::BMAL1). Quantitative live imaging in tissue explants and cells, including the central clock of the suprachiasmatic nucleus (SCN), revealed the circadian expression, nuclear-cytoplasmic mobility, fast kinetics and surprisingly low molecular abundance of endogenous BMAL1, providing significant quantitative insights into the intracellular mechanisms of circadian timing at single-cell resolution.

]]>
<![CDATA[Differential expression of interferon-lambda receptor 1 splice variants determines the magnitude of the antiviral response induced by interferon-lambda 3 in human immune cells]]> https://www.researchpad.co/article/elastic_article_13835 Type III IFNs (IFN-λs) are antiviral cytokines that are thought to act on specific subsets of cells, especially to protect mucosal barriers. Here, we demonstrate that IFN-λ3 differentially binds multiple human immune cell subsets, indicating the specific receptor subunit, IFN-λR1, is more broadly expressed in the human immune system, compared to published mouse models. IFN-λR1 expression increased after cellular activation, and antiviral responses were inhibited by a soluble version of the receptor. The direct interaction of IFN-λs with human immune cells, and specific regulation of IFN-λR1 expression, has broad mechanistic implications in the modulation of inflammatory or anti-cancer immune responses, and future antiviral therapies.

]]>
<![CDATA[Functional and structural consequences of epithelial cell invasion by <i>Bordetella pertussis</i> adenylate cyclase toxin]]> https://www.researchpad.co/article/elastic_article_7693 Bordetella pertussis, the causative agent of whopping cough, produces an adenylate cyclase toxin (CyaA) that plays a key role in the host colonization by targeting innate immune cells which express CD11b/CD18, the cellular receptor of CyaA. CyaA is also able to invade non-phagocytic cells, via a unique entry pathway consisting in a direct translocation of its catalytic domain across the cytoplasmic membrane of the cells. Within the cells, CyaA is activated by calmodulin to produce high levels of cyclic adenosine monophosphate (cAMP) and alter cellular physiology. In this study, we explored the effects of CyaA toxin on the cellular and molecular structure remodeling of A549 alveolar epithelial cells. Using classical imaging techniques, biochemical and functional tests, as well as advanced cell mechanics method, we quantify the structural and functional consequences of the massive increase of intracellular cyclic AMP induced by the toxin: cell shape rounding associated to adhesion weakening process, actin structure remodeling for the cortical and dense components, increase in cytoskeleton stiffness, and inhibition of migration and repair. We also show that, at low concentrations (0.5 nM), CyaA could significantly impair the migration and wound healing capacities of the intoxicated alveolar epithelial cells. As such concentrations might be reached locally during B. pertussis infection, our results suggest that the CyaA, beyond its major role in disabling innate immune cells, might also contribute to the local alteration of the epithelial barrier of the respiratory tract, a hallmark of pertussis.

]]>
<![CDATA[The adipokine vaspin is associated with decreased coronary in-stent restenosis <i>in vivo</i> and inhibits migration of human coronary smooth muscle cells <i>in vitro</i>]]> https://www.researchpad.co/article/elastic_article_7692 Percutaneous coronary intervention represents the most important treatment modality of coronary artery stenosis. In-stent restenosis (ISR) is still a limitation for the long-term outcome despite the introduction of drug eluting stents. It has been shown that adipokines directly influence vessel wall homeostasis by influencing the function of endothelial cells and arterial smooth muscle cells. Visceral adipose tissue-derived serpin vaspin was recently identified as a member of serine protease inhibitor family and serveral studies could demonstrate a relation to metabolic diseases. The aim of this study was to investigate a role of vaspin in the development of in-stent restenosis in vivo and on migration of smooth muscle cells and endothelial cells in vitro.MethodsWe studied 85 patients with stable coronary artery disease who underwent elective and successful PCI with implatation of drug eluting stents. Blood samples were taken directly before PCI. Vaspin plasma levels were measured by specific ELISA. ISR was evaluated eight months later by coronary angiography. Human coronary artery smooth muscle cells (HCASMC) and human umbilical vein endothelial cells (HUVEC) migration was analyzed by an in-vitro migration assay with different concentrations (0.004ng/mL up to 40ng/mL) of vaspin as well as by an scratch assay. For proliferation an impedance measurement with specialiced E-Plates was performed.ResultsDuring the follow up period, 14 patients developed ISR. Patients with ISR had significantly lower vaspin plasma levels compared to patients without ISR (0.213 ng/ml vs 0.382 ng/ml; p = 0.001). In patients with plasma vaspin levels above 1.35 ng/ml we could not observe any restenosis. There was also a significant correlation of plasma vaspin levels and late lumen loss in the stented coronary segments. Further we could demonstrate that vaspin nearly abolishes serum induced migration of HCASMC (100% vs. 9%; p<0.001) in a biphasic manner but not migration of HUVEC. Proliferation of HCASMC and HUVEC was not modulated by vaspin treatment.ConclusionWe were able to show that the adipokine vaspin selectively inhibits human coronary SMC migration in vitro and has no effect on HUVEC migration. Vaspin had no effect on proliferation of HUVEC which is an important process of the healing of the stented vessel. In addition, the occurrence of ISR after PCI with implantation of drug eluting stents was significantly associated with low vaspin plasma levels before intervention. Determination of vaspin plasma levels before PCI might be helpful in the identification of patients with high risk for development of ISR after stent implantation. In addition, the selective effects of vaspin on smooth muscle cell migration could potentially be used to reduce ISR without inhibition of re-endothelialization of the stented segment. ]]> <![CDATA[Application of co-culture technology of epithelial type cells and mesenchymal type cells using nanopatterned structures]]> https://www.researchpad.co/article/elastic_article_7654 Various nanopatterning techniques have been developed to improve cell proliferation and differentiation efficiency. As we previously reported, nanopillars and pores are able to sustain human pluripotent stem cells and differentiate pancreatic cells. From this, the nanoscale patterns would be effective environment for the co-culturing of epithelial and mesenchymal cell types. Interestingly, the nanopatterning selectively reduced the proliferative rate of mesenchymal cells while increasing the expression of adhesion protein in epithelial type cells. Additionally, co-cultured cells on the nanopatterning were not negatively affected in terms of cell function metabolic ability or cell survival. This is in contrast to conventional co-culturing methods such as ultraviolet or chemical treatments. The nanopatterning appears to be an effective environment for mesenchymal co-cultures with typically low proliferative rates cells such as astrocytes, neurons, melanocytes, and fibroblasts without using potentially damaging treatments.

]]>
<![CDATA[OAZ1 knockdown enhances viability and inhibits ER and LHR transcriptions of granulosa cells in geese]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc164

An increasing number of studies suggest that ornithine decarboxylase antizyme 1 (OAZ1), which is regarded as a tumor suppressor gene, regulates follicular development, ovulation, and steroidogenesis. The granulosa cells in the ovary play a critical role in these ovarian functions. However, the action of OAZ1 mediating physiological functions of granulosa cells is obscure. OAZ1 knockdown in granulosa cells of geese was carried out in the current study. The effect of OAZ1 knockdown on polyamine metabolism, cell proliferation, apoptosis, and hormone receptor transcription of primary granulosa cells in geese was measured. The viability of granulosa cells transfected with the shRNA OAZ1 at 48 h was significantly higher than the control (p<0.05). The level of putrescine and spermidine in granulosa cells down-regulating OAZ1 was 7.04- and 2.11- fold higher compared with the control, respectively (p<0.05). The CCND1, SMAD1, and BCL-2 mRNA expression levels in granulosa cells down-regulating OAZ1 were each significantly higher than the control, respectively (p<0.05), whereas the PCNA and CASPASE 3 expression levels were significantly lower than the control (p<0.05). The estradiol concentration, ER and LHR mRNA expression levels were significantly lower in granulosa cells down-regulating OAZ1 compared with the control (p<0.05). Taken together, our results indicated that OAZ1 knockdown elevated the putrescine and spermidine contents and enhanced granulosa cell viability and inhibited ER and LHR transcriptions of granulosa cells in geese.

]]>
<![CDATA[Recapitulation of the accessible interface of biopsy-derived canine intestinal organoids to study epithelial-luminal interactions]]> https://www.researchpad.co/article/N24a1d01a-2f11-47b7-a628-8330af6f7455

Recent advances in canine intestinal organoids have expanded the option for building a better in vitro model to investigate translational science of intestinal physiology and pathology between humans and animals. However, the three-dimensional geometry and the enclosed lumen of canine intestinal organoids considerably hinder the access to the apical side of epithelium for investigating the nutrient and drug absorption, host-microbiome crosstalk, and pharmaceutical toxicity testing. Thus, the creation of a polarized epithelial interface accessible from apical or basolateral side is critical. Here, we demonstrated the generation of an intestinal epithelial monolayer using canine biopsy-derived colonic organoids (colonoids). We optimized the culture condition to form an intact monolayer of the canine colonic epithelium on a nanoporous membrane insert using the canine colonoids over 14 days. Transmission and scanning electron microscopy revealed a physiological brush border interface covered by the microvilli with glycocalyx, as well as the presence of mucin granules, tight junctions, and desmosomes. The population of stem cells as well as differentiated lineage-dependent epithelial cells were verified by immunofluorescence staining and RNA in situ hybridization. The polarized expression of P-glycoprotein efflux pump was confirmed at the apical membrane. Also, the epithelial monolayer formed tight- and adherence-junctional barrier within 4 days, where the transepithelial electrical resistance and apparent permeability were inversely correlated. Hence, we verified the stable creation, maintenance, differentiation, and physiological function of a canine intestinal epithelial barrier, which can be useful for pharmaceutical and biomedical researches.

]]>
<![CDATA[Streptococcal H2O2 inhibits IgE-triggered degranulation of RBL-2H3 mast cell/basophil cell line by inducing cell death]]> https://www.researchpad.co/article/Nadf2e0c3-9608-4100-a6fa-f03310d30959

Mast cells and basophils are central players in allergic reactions triggered by immunoglobulin E (IgE). They have intracellular granules containing allergic mediators (e.g., histamine, serotonin, inflammatory cytokines, proteases and β-hexosaminidase), and stimulation by IgE-allergen complex leads to the release of such allergic mediators from the granules, that is, degranulation. Mast cells are residents of mucosal surfaces, including those of nasal and oral cavities, and play an important role in the innate defense system. Members of the mitis group streptococci such as Streptococcus oralis, are primary colonizers of the human oral cavity. They produce hydrogen peroxide (H2O2) as a by-product of sugar metabolism. In this study, we investigated the effects of streptococcal infection on RBL-2H3 mast cell/basophil cell line. Infection by oral streptococci did not induce degranulation of the cells. Stimulation of the RBL-2H3 cells with anti-dinitrophenol (DNP) IgE and DNP-conjugated human serum albumin triggers degranulation with the release of β-hexosaminidase. We found that S. oralis and other mitis group streptococci inhibited the IgE-triggered degranulation of RBL-2H3 cells. Since mitis group streptococci produce H2O2, we examined the effect of S. oralis mutant strain deficient in producing H2O2, and found that they lost the ability to suppress the degranulation. Moreover, H2O2 alone inhibited the IgE-induced degranulation. Subsequent analysis suggested that the inhibition of degranulation was related to the cytotoxicity of streptococcal H2O2. Activated RBL-2H3 cells produce interleukin-4 (IL-4); however, IL-4 production was not induced by streptococcal H2O2. Furthermore, an in vivo study using the murine pollen-induced allergic rhinitis model suggested that the streptococcal H2O2 reduces nasal allergic reaction. These findings reveal that H2O2 produced by oral mitis group streptococci inhibits IgE-stimulated degranulation by inducing cell death. Consequently, streptococcal H2O2 can be considered to modulate the allergic reaction in mucosal surfaces.

]]>
<![CDATA[Influence of the tubular network on the characteristics of calcium transients in cardiac myocytes]]> https://www.researchpad.co/article/N7f446290-780e-4486-a1de-95187c6060a1

Transverse and axial tubules (TATS) are an essential ingredient of the excitation-contraction machinery that allow the effective coupling of L-type Calcium Channels (LCC) and ryanodine receptors (RyR2). They form a regular network in ventricular cells, while their presence in atrial myocytes is variable regionally and among animal species We have studied the effect of variations in the TAT network using a bidomain computational model of an atrial myocyte with variable density of tubules. At each z-line the t-tubule length is obtained from an exponential distribution, with a given mean penetration length. This gives rise to a distribution of t-tubules in the cell that is characterized by the fractional area (F.A.) occupied by the t-tubules. To obtain consistent results, we average over different realizations of the same mean penetration length. To this, in some simulations we add the effect of a network of axial tubules. Then we study global properties of calcium signaling, as well as regional heterogeneities and local properties of sparks and RyR2 openings. In agreement with recent experiments in detubulated ventricular and atrial cells, we find that detubulation reduces the calcium transient and synchronization in release. However, it does not affect sarcoplasmic reticulum (SR) load, so the decrease in SR calcium release is due to regional differences in Ca2+ release, that is restricted to the cell periphery in detubulated cells. Despite the decrease in release, the release gain is larger in detubulated cells, due to recruitment of orphaned RyR2s, i.e, those that are not confronting a cluster of LCCs. This probably provides a safeguard mechanism, allowing physiological values to be maintained upon small changes in the t-tubule density. Finally, we do not find any relevant change in spark properties between tubulated and detubulated cells, suggesting that the differences found in experiments could be due to differential properties of the RyR2s in the membrane and in the t-tubules, not incorporated in the present model. This work will help understand the effect of detubulation, that has been shown to occur in disease conditions such as heart failure (HF) in ventricular cells, or atrial fibrillation (AF) in atrial cells.

]]>
<![CDATA[Disruption of genes associated with Charcot-Marie-Tooth type 2 lead to common behavioural, cellular and molecular defects in Caenorhabditis elegans]]> https://www.researchpad.co/article/N5d50b5cf-e057-490e-9c44-60569e9f28d4

Charcot-Marie-Tooth (CMT) disease is an inherited peripheral motor and sensory neuropathy. The disease is divided into demyelinating (CMT1) and axonal (CMT2) neuropathies, and although we have gained molecular information into the details of CMT1 pathology, much less is known about CMT2. Due to its clinical and genetic heterogeneity, coupled with a lack of animal models, common underlying mechanisms remain elusive. In order to gain an understanding of the normal function of genes associated with CMT2, and to draw direct comparisons between them, we have studied the behavioural, cellular and molecular consequences of mutating nine different genes in the nematode Caenorhabditis elegans (lin-41/TRIM2, dyn-1/DNM2, unc-116/KIF5A, fzo-1/MFN2, osm-9/TRPV4, cua-1/ATP7A, hsp-25/HSPB1, hint-1/HINT1, nep-2/MME). We show that C. elegans defective for these genes display debilitated movement in crawling and swimming assays. Severe morphological defects in cholinergic motors neurons are also evident in two of the mutants (dyn-1 and unc-116). Furthermore, we establish methods for quantifying muscle morphology and use these to demonstrate that loss of muscle structure occurs in the majority of mutants studied. Finally, using electrophysiological recordings of neuromuscular junction (NMJ) activity, we uncover reductions in spontaneous postsynaptic current frequency in lin-41, dyn-1, unc-116 and fzo-1 mutants. By comparing the consequences of mutating numerous CMT2-related genes, this study reveals common deficits in muscle structure and function, as well as NMJ signalling when these genes are disrupted.

]]>
<![CDATA[Deep learning assessment of breast terminal duct lobular unit involution: Towards automated prediction of breast cancer risk]]> https://www.researchpad.co/article/N8ae86a5e-90c1-41b1-ba31-58a5a939e3bc

Terminal duct lobular unit (TDLU) involution is the regression of milk-producing structures in the breast. Women with less TDLU involution are more likely to develop breast cancer. A major bottleneck in studying TDLU involution in large cohort studies is the need for labor-intensive manual assessment of TDLUs. We developed a computational pathology solution to automatically capture TDLU involution measures. Whole slide images (WSIs) of benign breast biopsies were obtained from the Nurses’ Health Study. A set of 92 WSIs was annotated for acini, TDLUs and adipose tissue to train deep convolutional neural network (CNN) models for detection of acini, and segmentation of TDLUs and adipose tissue. These networks were integrated into a single computational method to capture TDLU involution measures including number of TDLUs per tissue area, median TDLU span and median number of acini per TDLU. We validated our method on 40 additional WSIs by comparing with manually acquired measures. Our CNN models detected acini with an F1 score of 0.73±0.07, and segmented TDLUs and adipose tissue with Dice scores of 0.84±0.13 and 0.87±0.04, respectively. The inter-observer ICC scores for manual assessments on 40 WSIs of number of TDLUs per tissue area, median TDLU span, and median acini count per TDLU were 0.71, 0.81 and 0.73, respectively. Intra-observer reliability was evaluated on 10/40 WSIs with ICC scores of >0.8. Inter-observer ICC scores between automated results and the mean of the two observers were: 0.80 for number of TDLUs per tissue area, 0.57 for median TDLU span, and 0.80 for median acini count per TDLU. TDLU involution measures evaluated by manual and automated assessment were inversely associated with age and menopausal status. We developed a computational pathology method to measure TDLU involution. This technology eliminates the labor-intensiveness and subjectivity of manual TDLU assessment, and can be applied to future breast cancer risk studies.

]]>
<![CDATA[Assessing the effects of intratendinous genipin injections: Mechanical augmentation and spatial distribution in an ex vivo degenerative tendon model]]> https://www.researchpad.co/article/N537496c4-2c39-41e6-9ca3-002a318b88b6

Background

Tendinopathy is a common musculoskeletal disorder and current treatment options show limited success. Genipin is an effective collagen crosslinker with low cytotoxicity and a promising therapeutic strategy for stabilizing an intratendinous lesion.

Purpose

This study examined the mechanical effect and delivery of intratendinous genipin injection in healthy and degenerated tendons.

Study design

Controlled laboratory study

Methods

Bovine superficial digital flexor tendons were randomized into four groups: Healthy control (N = 25), healthy genipin (N = 25), degenerated control (N = 45) and degenerated genipin (N = 45). Degeneration was induced by Collagenase D injection. After 24h, degenerated tendons were subsequently injected with either 0.2ml of 80mM genipin or buffer only. 24h post-treatment, samples were cyclically loaded for 500 cycles and then ramp loaded to failure. Fluorescence and absorption assays were performed to analyze genipin crosslink distribution and estimate tissue concentration after injection.

Results

Compared to controls, genipin treatment increased ultimate force by 19% in degenerated tendons (median control 530 N vs. 633 N; p = 0.0078). No significant differences in mechanical properties were observed in healthy tendons, while degenerated tendons showed a significant difference in ultimate stress (+23%, p = 0.049), stiffness (+27%, p = 0.037), work to failure (+42%, p = 0.009), and relative stress relaxation (-11%, p < 0.001) after genipin injection. Fluorescence and absorption were significantly higher in genipin treated tendons compared to control groups. A higher degree of crosslinking (+45%, p < 0.001) and a more localized distribution were observed in the treated healthy compared to degenerated tendons, with higher genipin tissue concentrations in healthy (7.9 mM) than in degenerated tissue (2.3 mM).

Conclusion

Using an ex-vivo tendinopathy model, intratendinous genipin injections recovered mechanical strength to the level of healthy tendons. Measured by genipin tissue distribution, injection is an effective method for local delivery.

Clinical relevance

This study provides a proof of concept for the use of intratendinous genipin injection in the treatment of tendinopathy. The results demonstrate that a degenerated tendon can be mechanically augmented by a clinically viable method of local genipin delivery. This warrants further in vivo studies towards the development of a clinically applicable treatment based on genipin.

]]>
<![CDATA[Reduction of osteoarthritis severity in the temporomandibular joint of rabbits treated with chondroitin sulfate and glucosamine]]> https://www.researchpad.co/article/N10336f10-2066-4958-9182-9e228dac929f

Osteoarthritis is a degenerative disease that causes substantial changes in joint tissues, such as cartilage degeneration and subchondral bone sclerosis. Chondroitin sulfate and glucosamine are commonly used products for the symptomatic treatment of osteoarthritis. The aim of the present study was to investigate the effects of these products when used as structure-modifying drugs on the progression of osteoarthritis in the rabbit temporomandibular joint. Thirty-six New Zealand rabbits were divided into 3 groups (n = 12/group): control (no disease); osteoarthritis (disease induction); and treatment (disease induction and administration of chondroitin sulfate and glucosamine). Osteoarthritis was induced by intra-articular injection of monosodium iodoacetate. Animals were killed at 30 and 90 days after initiation of therapy. The treatment was effective in reducing disease severity, with late effects and changes in the concentration of glycosaminoglycans in the articular disc. The results indicate that chondroitin sulfate and glucosamine may have a structure-modifying effect on the tissues of rabbit temporomandibular joints altered by osteoarthritis.

]]>
<![CDATA[pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage]]> https://www.researchpad.co/article/N0686bd46-1746-4f66-8610-270f1b75b482

Transparent research in musculoskeletal imaging is fundamental to reliably investigate diseases such as knee osteoarthritis (OA), a chronic disease impairing femoral knee cartilage. To study cartilage degeneration, researchers have developed algorithms to segment femoral knee cartilage from magnetic resonance (MR) images and to measure cartilage morphology and relaxometry. The majority of these algorithms are not publicly available or require advanced programming skills to be compiled and run. However, to accelerate discoveries and findings, it is crucial to have open and reproducible workflows. We present pyKNEEr, a framework for open and reproducible research on femoral knee cartilage from MR images. pyKNEEr is written in python, uses Jupyter notebook as a user interface, and is available on GitHub with a GNU GPLv3 license. It is composed of three modules: 1) image preprocessing to standardize spatial and intensity characteristics; 2) femoral knee cartilage segmentation for intersubject, multimodal, and longitudinal acquisitions; and 3) analysis of cartilage morphology and relaxometry. Each module contains one or more Jupyter notebooks with narrative, code, visualizations, and dependencies to reproduce computational environments. pyKNEEr facilitates transparent image-based research of femoral knee cartilage because of its ease of installation and use, and its versatility for publication and sharing among researchers. Finally, due to its modular structure, pyKNEEr favors code extension and algorithm comparison. We tested our reproducible workflows with experiments that also constitute an example of transparent research with pyKNEEr, and we compared pyKNEEr performances to existing algorithms in literature review visualizations. We provide links to executed notebooks and executable environments for immediate reproducibility of our findings.

]]>
<![CDATA[Micro-RNA signatures in monozygotic twins discordant for congenital heart defects]]> https://www.researchpad.co/article/N5a7c737e-22cf-4de0-b5e8-861cb3f8f58f

Background

MicroRNAs (miRNAs) are small RNAs regulating gene expression post-transcriptionally. Recent studies demonstrated that miRNAs are involved in the development of congenital heart defects (CHD). In this study, we aimed at identifying the specific patterns of miRNAs in blood of monozygotic twin pairs discordant for CHD and to assess whether miRNAs might be involved in the development or reflect the consequences of CHD.

Methods

miRNA microarray analysis and Real-Time Quantitative PCR (RT-qPCR) were employed to determine the miRNA abundance level from 12 monozygotic twins discordant for CHD and their non-CHD co-twins (n = 12). Enrichment analyses of altered miRNAs were performed using bioinformatics tools.

Results

Compared with non-CHD co-twins, profiling analysis indicated 34 miRNAs with a significant difference in abundance level (p<0.05, fold change ≥ 1.3), of which 11 miRNAs were up-regulated and 23 miRNAs were down-regulated. Seven miRNAs were validated with RT-qPCR including miR-511-3p, miR-1306-5p, miR-421, miR-4707-3p, miR-4732-3p, miR-5189-3p, and miR-890, and the results were consistent with microarray analysis. Five miRNAs namely miR-511-3p, miR-1306-5p, miR-4732-3p, miR-5189-3p, and miR-890 were found to be significantly up-regulated in twins < 10 years old. Bioinformatics analysis showed that the 7 validated miRNAs were involved in phosphatidylinositol signaling, gap junction signaling, and adrenergic signaling in cardiomyocytes.

Conclusions

Our data show deregulated miRNA abundance levels in the peripheral blood of monozygotic twins discordant for CHD, and identify new candidates for further analysis, which may contribute to understanding the development of CHD in the future. Bioinformatics analysis indicated that the target genes of these miRNAs are likely involved in signaling and communication of cardiomyocytes.

]]>
<![CDATA[A new finite element based parameter to predict bone fracture]]> https://www.researchpad.co/article/N73efbb2c-4546-457e-9797-023764c15f47

Dual Energy X-Ray Absorptiometry (DXA) is currently the most widely adopted non-invasive clinical technique to assess bone mineral density and bone mineral content in human research and represents the primary tool for the diagnosis of osteoporosis. DXA measures areal bone mineral density, BMD, which does not account for the three-dimensional structure of the vertebrae and for the distribution of bone mass. The result is that longitudinal DXA can only predict about 70% of vertebral fractures. This study proposes a complementary tool, based on Finite Element (FE) models, to improve the DXA accuracy. Bone is simulated as elastic and inhomogeneous material, with stiffness distribution derived from DXA greyscale images of density. The numerical procedure simulates a compressive load on each vertebra to evaluate the local minimum principal strain values. From these values, both the local average and the maximum strains are computed over the cross sections and along the height of the analysed bone region, to provide a parameter, named Strain Index of Bone (SIB), which could be considered as a bone fragility index. The procedure is initially validated on 33 cylindrical trabecular bone samples obtained from porcine lumbar vertebrae, experimentally tested under static compressive loading. Comparing the experimental mechanical parameters with the SIB, we could find a higher correlation of the ultimate stress, σULT, with the SIB values (R2adj = 0.63) than that observed with the conventional DXA-based clinical parameters, i.e. Bone Mineral Density, BMD (R2adj = 0.34) and Trabecular Bone Score, TBS (R2adj = -0.03). The paper finally presents a few case studies of numerical simulations carried out on human lumbar vertebrae. If our results are confirmed in prospective studies, SIB could be used—together with BMD and TBS—to improve the fracture risk assessment and support the clinical decision to assume specific drugs for metabolic bone diseases.

]]>
<![CDATA[The Salmonella type III effector SpvC triggers the reverse transmigration of infected cells into the bloodstream]]> https://www.researchpad.co/article/N64786058-46f1-4e38-866e-6d07cb9ab4f4

Salmonella can appear in the bloodstream within CD18 expressing phagocytes following oral ingestion in as little as 15 minutes. Here, we provide evidence that the process underlying this phenomenon is reverse transmigration. Reverse transmigration is a normal host process in which dendritic cells can reenter the bloodstream by traversing endothelium in the basal to apical direction. We have developed an in vitro reverse transmigration assay in which dendritic cells are given the opportunity to cross endothelial monolayers in the basal to apical direction grown on membranes with small pores, modeling how such cells can penetrate the bloodstream. We demonstrate that exposing dendritic cells to microbial components negatively regulates reverse transmigration. We propose that microbial components normally cause the host to toggle between positively and negatively regulating reverse transmigration, balancing the need to resolve inflammation with inhibiting the spread of microbes. We show that Salmonella in part overcomes this negative regulation of reverse transmigration with the Salmonella pathogenicity island-2 encoded type III secretion system, which increases reverse transmigration by over an order of magnitude. The SPI-2 type III secretion system does this in part, but not entirely by injecting the type III effector SpvC into infected cells. We further demonstrate that SpvC greatly promotes early extra-intestinal dissemination in mice. This result combined with the previous observation that the spv operon is conserved amongst strains of non-typhoidal Salmonella capable of causing bacteremia in humans suggests that this pathway to the bloodstream could be important for understanding human infections.

]]>
<![CDATA[Association between circulating neuregulin4 levels and diabetes mellitus: A meta-analysis of observational studies]]> https://www.researchpad.co/article/N9558b610-af50-4464-8a85-11a7817968a6

Introduction

Neuregulin 4 (Nrg4) was proven as a brown fat-enriched secreted factor that can regulate glucose and lipid metabolism. However, the association between circulating Nrg4 levels and diabetes mellitus (DM) in human remains unclear. We conducted a meta-analysis to investigate association of circulating Nrg4 with DM.

Methods

Observational studies comparing circulating Nrg4 levels in diabetes patients and health controls were included. Circulating Nrg4, correlation coefficients of clinical indices and circulating Nrg4 were pooled by meta-analysis.

Results

Seven studies were included. The pooled results indicated there were no significant difference in the circulating Nrg4 between diabetes patients and controls (SMD = 0.18, 95%CI = -0.06 to 0.42, P = 0.143). However, diabetes patients had higher circulating Nrg4 than their controls in cross-sectional studies (SMD = 0.55, 95%CI = 0.36 to 0.73, P<0.001). None of the renal function and metabolic syndrome markers were correlated with circulating Nrg4, whereas the HbA1c and BMI were positively correlated (rs = 0.09, 95%CI = 0.03 to 0.16, P = 0.005; rs = 0.20, 95%CI = 0.07 to 0.34, P = 0.003; respectively).

Conclusion

Our findings suggested circulating Nrg4 may play a role in in the development of DM in cross-sectional studies and circulating Nrg4 might be associated with imbalance in glucose metabolism and obesity.

]]>
<![CDATA[Transient expression of Wnt5a elicits ocular features of pseudoexfoliation syndrome in mice]]> https://www.researchpad.co/article/5c897767d5eed0c4847d2c07

Purpose

Pseudoexfoliation (PEX) syndrome is an age-related systemic disease with ocular manifestations. The development of animal models is critical in order to elucidate the cause of the disease and to test potential treatment regimens. The purpose of this study is to report phenotypes found in mouse eyes injected with Adenovirus coding Wnt5a. Some of the phenotypes resemble those found in PEX patients while others are different.

Methods

Recombinant Adenovirus coding Wnt5a or green fluorescent protein (GFP) were injected into mouse eyes. Two months after the injection, eyes were examined for PEX phenotypes using slit lamp, fluorescence stereomicroscope, histological staining, immunostaining and transmission electron microscope.

Result

Certain ocular features of PEX syndrome were found in mouse eyes injected with recombinant Adenovirus coding Wnt5a. These features include accumulation of exfoliation-like extracellular material on surfaces of anterior segment structures and its dispersion in the anterior chamber, saw-tooth appearance and disrupted basement membrane of the posterior iris pigment epithelium, iris stromal atrophy and disorganized ciliary zonules. Ultrastructure analysis of the exfoliation material revealed that the microfibril structure found in this model was different from those of PEX patients.

Conclusion

These features, resembling signs of ocular PEX syndrome in patients, suggest that new information obtained from this study will be helpful for developing better mouse models for PEX syndrome.

]]>
<![CDATA[Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing]]> https://www.researchpad.co/article/5c8c1978d5eed0c484b4d71e

Various strategies have been attempted to replace esophageal defects with natural or artificial substitutes using tissue engineering. However, these methods have not yet reached clinical application because of the high risks related to their immunogenicity or insufficient biocompatibility. In this study, we developed a scaffold-free structure with a mixture of cell types using bio-three-dimensional (3D) printing technology and assessed its characteristics in vitro and in vivo after transplantation into rats. Normal human dermal fibroblasts, human esophageal smooth muscle cells, human bone marrow-derived mesenchymal stem cells, and human umbilical vein endothelial cells were purchased and used as a cell source. After the preparation of multicellular spheroids, esophageal-like tube structures were prepared by bio-3D printing. The structures were matured in a bioreactor and transplanted into 10-12-week-old F344 male rats as esophageal grafts under general anesthesia. Mechanical and histochemical assessment of the structures were performed. Among 4 types of structures evaluated, those with the larger proportion of mesenchymal stem cells tended to show greater strength and expansion on mechanical testing and highly expressed α-smooth muscle actin and vascular endothelial growth factor on immunohistochemistry. Therefore, the structure with the larger proportion of mesenchymal stem cells was selected for transplantation. The scaffold-free structures had sufficient strength for transplantation between the esophagus and stomach using silicon stents. The structures were maintained in vivo for 30 days after transplantation. Smooth muscle cells were maintained, and flat epithelium extended and covered the inner surface of the lumen. Food had also passed through the structure. These results suggested that the esophagus-like scaffold-free tubular structures created using bio-3D printing could hold promise as a substitute for the repair of esophageal defects.

]]>