ResearchPad - bluetongue-virus https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A model for the assessment of bluetongue virus serotype 1 persistence in Spain]]> https://www.researchpad.co/article/elastic_article_11225 Bluetongue virus (BTV) is an arbovirus of ruminants that has been circulating in Europe continuously for more than two decades and has become endemic in some countries such as Spain. Spain is ideal for BTV epidemiological studies since BTV outbreaks from different sources and serotypes have occurred continuously there since 2000; BTV-1 has been reported there from 2007 to 2017. Here we develop a model for BTV-1 endemic scenario to estimate the risk of an area becoming endemic, as well as to identify the most influential factors for BTV-1 persistence. We created abundance maps at 1-km2 spatial resolution for the main vectors in Spain, Culicoides imicola and Obsoletus and Pulicaris complexes, by combining environmental satellite data with occurrence models and a random forest machine learning algorithm. The endemic model included vector abundance and host-related variables (farm density). The three most relevant variables in the endemic model were the abundance of C. imicola and Obsoletus complex and density of goat farms (AUC 0.86); this model suggests that BTV-1 is more likely to become endemic in central and southwestern regions of Spain. It only requires host- and vector-related variables to identify areas at greater risk of becoming endemic for bluetongue. Our results highlight the importance of suitable Culicoides spp. prediction maps for bluetongue epidemiological studies and decision-making about control and eradication measures.

]]>
<![CDATA[Ecological niche modeling the potential geographic distribution of four Culicoides species of veterinary significance in Florida, USA]]> https://www.researchpad.co/article/5c7067aad5eed0c4847c7470

Epizootic hemorrhagic disease (EHD) is a viral arthropod-borne disease affecting wild and domestic ruminants, caused by infection with epizootic hemorrhagic disease virus (EHDV). EHDV is transmitted to vertebrate animal hosts by biting midges in the genus Culicoides Latreille (Diptera: Ceratopogonidae). Culicoides sonorensis Wirth and Jones is the only confirmed vector of EHDV in the United States but is considered rare in Florida and not sufficiently abundant to support EHDV transmission. This study used ecological niche modeling to map the potential geographical distributions and associated ecological variable space of four Culicoides species suspected of transmitting EHDV in Florida, including Culicoides insignis Lutz, Culicoides stellifer (Coquillett), Culicoides debilipalpis Hoffman and Culicoides venustus Lutz. Models were developed with the Genetic Algorithm for Rule Set Production in DesktopGARP v1.1.3 using species occurrence data from field sampling along with environmental variables from WorldClim and Trypanosomiasis and Land use in Africa. For three Culicoides species (C. insignis, C. stellifer and C. debilipalpis) 96–98% of the presence points were predicted across the Florida landscape (63.8% - 72.5%). For C. venustus, models predicted 98.00% of presence points across 27.4% of Florida. Geographic variations were detected between species. Culicoides insignis was predicted to be restricted to peninsular Florida, and in contrast, C. venustus was predicted to be primarily in north Florida and the panhandle region. Culicoides stellifer and C. debilipalpis were predicted nearly statewide. Environmental conditions also differed by species, with some species’ ranges predicted by more narrow ranges of variables than others. The Normalized Difference Vegetation Index (NDVI) was a major predictor of C. venustus and C. insignis presence. For C. stellifer, Land Surface Temperature, Middle Infrared were the most limiting predictors of presence. The limiting variables for C. debilipalpis were NDVI Bi-Annual Amplitude and NDVI Annual Amplitude at 22.5% and 28.1%, respectively. The model outputs, including maps and environmental variable range predictions generated from these experiments provide an important first pass at predicting species of veterinary importance in Florida. Because EHDV cannot exist in the environment without the vector, model outputs can be used to estimate the potential risk of disease for animal hosts across Florida. Results also provide distribution and habitat information useful for integrated pest management practices.

]]>
<![CDATA[A cross-sectional serosurvey in a sheep population in central Italy following a bluetongue epidemic]]> https://www.researchpad.co/article/5c3fa5cbd5eed0c484ca89e4

Bluetongue (BT) is a viral disease that affects ruminants and is transmitted by midges of the genus Culicoides spp. The seroprevalence, the clinical form and the occurrence rates significantly differ in relation to several factors such as bluetongue virus (BTV) serotype, host species, breed susceptibility, specific previous exposure, vector ecology, husbandry and health status. Following the 2001–2006 BTV2 and BTV16 epidemics in central Italy, a new epidemic caused by BTV1 occurred in 2013–2015 causing 398 outbreaks in a susceptible population of about 1 million ruminants. The present study assessed the BTV1 seroprevalence in the sheep population of central Italy by conducting two cross-sectional surveys, in the proximity of and within BT outbreak farms. A total of 2,984 sheep from 437 farms were sampled. The animal-level prevalence was 19% (95% CI: 17–21%), the between-herd prevalence was 46% (95% CI: 41–51%) and the within-herd prevalence was 21% (95% CI: 16–26%). Risk factors were investigated by logistic regression models. Living on a farm where an outbreak occurred and the number of outbreaks in proximity of the farm were identified as risk factors, while herd size was identified as a protective factor. This study represents the first BT survey in southern Europe and reports valuable findings on BTV epidemiology. Despite intensive virus circulation, the estimated seroprevalences were low. The assessment of the population immunity level is crucial for defining an efficient vaccination strategy and for predicting the impact of future virus circulation. In view of the low seroprevalence detected albeit an extensive BTV1 circulation, the population immunity was likely to be inadequate in preventing new BTV1 epidemics. Moreover, considering the recurrent introduction of new serotypes from North Africa and the Balkans, the control of multi-serotype BTV infections will continue to present a challenge in the near future.

]]>
<![CDATA[Development of a GeXP-multiplex PCR assay for the simultaneous detection and differentiation of six cattle viruses]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdb9d0

Foot-and-mouth disease virus (FMDV), Bluetongue virus (BTV), Vesicular stomatitis Virus (VSV), Bovine viral diarrheal (BVDV), Bovine rotavirus (BRV), and Bovine herpesvirus 1 (IBRV) are common cattle infectious viruses that cause a great economic loss every year in many parts of the world. A rapid and high-throughput GenomeLab Gene Expression Profiler (GeXP) analyzer-based multiplex PCR assay was developed for the simultaneous detection and differentiation of these six cattle viruses. Six pairs of chimeric primers consisting of both the gene-specific primer and a universal primer were designed and used for amplification. Then capillary electrophoresis was used to separate the fluorescent labeled PCR products according to the amplicons size. The specificity of GeXP-multiplex PCR assay was examined with samples of the single template and mixed template of six viruses. The sensitivity was evaluated using the GeXP-multiplex PCR assay on serial 10-fold dilutions of ssRNAs obtained via in vitro transcription. To further evaluate the reliability, 305 clinical samples were tested by the GeXP-multiplex PCR assay. The results showed that the corresponding virus specific fragments of genes were amplified. The detection limit of the GeXP-multiplex PCR assay was 100 copies/μL in a mixed sample of ssRNAs containing target genes of six different cattle viruses, whereas the detection limit for the Gexp-mono PCR assay for a single target gene was 10 copies/μL. In detection of viruses in 305 clinical samples, the results of GeXP were consistent with simplex real-time PCR. Analysis of positive samples by sequencing demonstrated that the GeXP-multiplex PCR assay had no false positive samples of nonspecific amplification. In conclusion, this GeXP-multiplex PCR assay is a high throughput, specific, sensitive, rapid and simple method for the detection and differentiation of six cattle viruses. It is an effective tool that can be applied for the rapid differential diagnosis of clinical samples and for epidemiological investigation.

]]>
<![CDATA[Identification of the Genome Segments of Bluetongue Virus Serotype 26 (Isolate KUW2010/02) that Restrict Replication in a Culicoides sonorensis Cell Line (KC Cells)]]> https://www.researchpad.co/article/5989dabcab0ee8fa60baf3bd

Bluetongue virus (BTV) can infect most ruminant species and is usually transmitted by adult, vector-competent biting midges (Culicoides spp.). Infection with BTV can cause severe clinical signs and can be fatal, particularly in naïve sheep and some deer species. Although 24 distinct BTV serotypes were recognized for several decades, additional ‘types’ have recently been identified, including BTV-25 (from Switzerland), BTV-26 (from Kuwait) and BTV-27 from France (Corsica). Although BTV-25 has failed to grow in either insect or mammalian cell cultures, BTV-26 (isolate KUW2010/02), which can be transmitted horizontally between goats in the absence of vector insects, does not replicate in a Culicoides sonorensis cell line (KC cells) but can be propagated in mammalian cells (BSR cells). The BTV genome consists of ten segments of linear dsRNA. Mono-reassortant viruses were generated by reverse-genetics, each one containing a single BTV-26 genome segment in a BTV-1 genetic-background. However, attempts to recover a mono-reassortant containing genome-segment 2 (Seg-2) of BTV-26 (encoding VP2), were unsuccessful but a triple-reassortant was successfully generated containing Seg-2, Seg-6 and Seg-7 (encoding VP5 and VP7 respectively) of BTV-26. Reassortants were recovered and most replicated well in mammalian cells (BSR cells). However, mono-reassortants containing Seg-1 or Seg-3 of BTV-26 (encoding VP1, or VP3 respectively) and the triple reassortant failed to replicate, while a mono-reassortant containing Seg-7 of BTV-26 only replicated slowly in KC cells.

]]>
<![CDATA[Quantifying the roles of host movement and vector dispersal in the transmission of vector-borne diseases of livestock]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf2f0

The role of host movement in the spread of vector-borne diseases of livestock has been little studied. Here we develop a mathematical framework that allows us to disentangle and quantify the roles of vector dispersal and livestock movement in transmission between farms. We apply this framework to outbreaks of bluetongue virus (BTV) and Schmallenberg virus (SBV) in Great Britain, both of which are spread by Culicoides biting midges and have recently emerged in northern Europe. For BTV we estimate parameters by fitting the model to outbreak data using approximate Bayesian computation, while for SBV we use previously derived estimates. We find that around 90% of transmission of BTV between farms is a result of vector dispersal, while for SBV this proportion is 98%. This difference is a consequence of higher vector competence and shorter duration of viraemia for SBV compared with BTV. For both viruses we estimate that the mean number of secondary infections per infected farm is greater than one for vector dispersal, but below one for livestock movements. Although livestock movements account for a small proportion of transmission and cannot sustain an outbreak on their own, they play an important role in establishing new foci of infection. However, the impact of restricting livestock movements on the spread of both viruses depends critically on assumptions made about the distances over which vector dispersal occurs. If vector dispersal occurs primarily at a local scale (99% of transmission occurs <25 km), movement restrictions are predicted to be effective at reducing spread, but if dispersal occurs frequently over longer distances (99% of transmission occurs <50 km) they are not.

]]>
<![CDATA[The Interaction between Vector Life History and Short Vector Life in Vector-Borne Disease Transmission and Control]]> https://www.researchpad.co/article/5989daa9ab0ee8fa60ba8c72

Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models.

]]>
<![CDATA[Development and Evaluation of Real Time RT-PCR Assays for Detection and Typing of Bluetongue Virus]]> https://www.researchpad.co/article/5989dac5ab0ee8fa60bb2211

Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple ‘TaqMan’ fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the ‘Orbivirus Reference Collection’ (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures.

]]>
<![CDATA[Climate Change Influences on the Global Potential Distribution of Bluetongue Virus]]> https://www.researchpad.co/article/5989da6dab0ee8fa60b935da

The geographic distribution of arboviruses has received considerable attention after several dramatic emergence events around the world. Bluetongue virus (BTV) is classified among category “A” diseases notifiable to the World Organization of Animal Health (OIE), and is transmitted among ruminants by biting midges of the genus Culicoides. Here, we developed a comprehensive occurrence data set to map the current distribution, estimate the ecological niche, and explore the future potential distribution of BTV globally using ecological niche modeling and based on diverse future climate scenarios from general circulation models (GCMs) for four representative concentration pathways (RCPs). The broad ecological niche and potential geographic distribution of BTV under present-day conditions reflected the disease’s current distribution across the world in tropical, subtropical, and temperate regions. All model predictions were significantly better than random expectations. As a further evaluation of model robustness, we compared our model predictions to 331 independent records from most recent outbreaks from the Food and Agriculture Organization Emergency Prevention System for Transboundary Animal and Plant Pests and Diseases Information System (EMPRES-i); all were successfully anticipated by the BTV model. Finally, we tested ecological niche similarity among possible vectors and BTV, and could not reject hypotheses of niche similarity. Under future-climate conditions, the potential distribution of BTV was predicted to broaden, especially in central Africa, United States, and western Russia.

]]>
<![CDATA[Understanding Spatio-Temporal Variability in the Reproduction Ratio of the Bluetongue (BTV-1) Epidemic in Southern Spain (Andalusia) in 2007 Using Epidemic Trees]]> https://www.researchpad.co/article/5989dacaab0ee8fa60bb3c66

Andalusia (Southern Spain) is considered one of the main routes of introduction of bluetongue virus (BTV) into Europe, evidenced by a devastating epidemic caused by BTV-1 in 2007. Understanding the pattern and the drivers of BTV-1 spread in Andalusia is critical for effective detection and control of future epidemics. A long-standing metric for quantifying the behaviour of infectious diseases is the case-reproduction ratio (Rt), defined as the average number of secondary cases arising from a single infected case at time t (for t>0). Here we apply a method using epidemic trees to estimate the between-herd case reproduction ratio directly from epidemic data allowing the spatial and temporal variability in transmission to be described. We then relate this variability to predictors describing the hosts, vectors and the environment to better understand why the epidemic spread more quickly in some regions or periods. The Rt value for the BTV-1 epidemic in Andalusia peaked in July at 4.6, at the start of the epidemic, then decreased to 2.2 by August, dropped below 1 by September (0.8), and by October it had decreased to 0.02. BTV spread was the consequence of both local transmission within established disease foci and BTV expansion to distant new areas (i.e. new foci), which resulted in a high variability in BTV transmission, not only among different areas, but particularly through time, which suggests that general control measures applied at broad spatial scales are unlikely to be effective. This high variability through time was probably due to the impact of temperature on BTV transmission, as evidenced by a reduction in the value of Rt by 0.0041 for every unit increase (day) in the extrinsic incubation period (EIP), which is itself directly dependent on temperature. Moreover, within the range of values at which BTV-1 transmission occurred in Andalusia (20.6°C to 29.5°C) there was a positive correlation between temperature and Rt values, although the relationship was not linear, probably as a result of the complex relationship between temperature and the different parameters affecting BTV transmission. Rt values for BTV-1 in Andalusia fell below the threshold of 1 when temperatures dropped below 21°C, a much higher threshold than that reported in other BTV outbreaks, such as the BTV-8 epidemic in Northern Europe. This divergence may be explained by differences in the adaptation to temperature of the main vectors of the BTV-1 epidemic in Andalusia (Culicoides imicola) compared those of the BTV-8 epidemic in Northern Europe (Culicoides obsoletus). Importantly, we found that BTV transmission (Rt value) increased significantly in areas with higher densities of sheep. Our analysis also established that control of BTV-1 in Andalusia was complicated by the simultaneous establishment of several distant foci at the start of the epidemic, which may have been caused by several independent introductions of infected vectors from the North of Africa. We discuss the implications of these findings for BTV surveillance and control in this region of Europe.

]]>
<![CDATA[Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran]]> https://www.researchpad.co/article/5989dabdab0ee8fa60baf4ac

A molecular and serological survey of selected viruses in free-ranging wild ruminants was conducted in 13 different districts in Iran. Samples were collected from 64 small wild ruminants belonging to four different species including 25 Mouflon (Ovis orientalis), 22 wild goat (Capra aegagrus), nine Indian gazelle (Gazella bennettii) and eight Goitered gazelle (Gazella subgutturosa) during the national survey for wildlife diseases in Iran. Serum samples were evaluated using serologic antibody tests for Peste de petits ruminants virus (PPRV), Pestiviruses [Border Disease virus (BVD) and Bovine Viral Diarrhoea virus (BVDV)], Bluetongue virus (BTV), Bovine herpesvirus type 1 (BHV-1), and Parainfluenza type 3 (PI3). Sera were also ELISA tested for Pestivirus antigen. Tissue samples including spleen, liver, lung, tonsils, mesenteric and mediastinal lymph nodes and white blood cells (WBCs) were tested using polymerase chain reaction (PCR) for PPRV, Foot and Mouth Disease virus (FMDV), Pestivirus, BTV, Ovine herpesvirus type 2 (OvHV-2) and BHV-1. Serologic tests were positive for antibodies against PPRV (17%), Pestiviruses (2%) and BTV (2%). No antibodies were detected for BHV-1 or PI3, and no Pestivirus antigen was detected. PCR results were positive for PPRV (7.8%), FMDV (11%), BTV (3%), OvHV-2 (31%) and BHV-1 (1.5%). None of the samples were positive for Pestiviruses.

]]>
<![CDATA[A Deterministic Model to Quantify Risk and Guide Mitigation Strategies to Reduce Bluetongue Virus Transmission in California Dairy Cattle]]> https://www.researchpad.co/article/5989da55ab0ee8fa60b8eb4e

The global distribution of bluetongue virus (BTV) has been changing recently, perhaps as a result of climate change. To evaluate the risk of BTV infection and transmission in a BTV-endemic region of California, sentinel dairy cows were evaluated for BTV infection, and populations of Culicoides vectors were collected at different sites using carbon dioxide. A deterministic model was developed to quantify risk and guide future mitigation strategies to reduce BTV infection in California dairy cattle. The greatest risk of BTV transmission was predicted within the warm Central Valley of California that contains the highest density of dairy cattle in the United States. Temperature and parameters associated with Culicoides vectors (transmission probabilities, carrying capacity, and survivorship) had the greatest effect on BTV’s basic reproduction number, R0. Based on these analyses, optimal control strategies for reducing BTV infection risk in dairy cattle will be highly reliant upon early efforts to reduce vector abundance during the months prior to peak transmission.

]]>