ResearchPad - body-limbs https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Special footwear designed for pregnant women and its effect on kinematic gait parameters during pregnancy and postpartum period]]> https://www.researchpad.co/article/elastic_article_13821 During pregnancy, an array of changes occurs in women body to enable the growth and development of the future baby and the consequent delivery. These changes are reflected in the range of motion of trunk, pelvis, lower limbs and other body segments, affect the locomotion and some of these changes may persist to the postpartum period. The aim of this study was to describe the changes affecting the gait during pregnancy and to determine the effect of tested footwear on kinematic gait characteristics during pregnancy as previous studies indicate that special orthopaedic insoles and footwear might be useful in prevention of the common musculoskeletal pain and discomfort related to pregnancy. Participants from the control group (n = 18), without any intervention, and the experimental group (n = 23), which was wearing the tested shoes, were measured at their 14, 28 and 37 gestational weeks and 28 weeks postpartum to capture the complete pregnancy-related changes in gait. The gait 3D kinematic data were obtained using Simi Motion System. The differences between the control and experimental group at the first data collection session in most of the analysed variables, as well as relatively high standard deviations of analysed variables indicate large individual differences in the gait pattern. The effect of tested footwear on kinematic gait pattern changes may be explained by its preventive effect against the foot arches falling. In the control group, changes associated previously with the foot arches falling and hindfoot hyperpronation were observed during advanced phases of pregnancy and postpartum, e.g. increase in knee flexion or increase in spinal curvature. For the comprehensive evaluation of the tested footwear on pregnancy gait pattern, future studies combining the kinematic and dynamic plantographic methods are needed.

]]>
<![CDATA[Adaptation to unstable coordination patterns in individual and joint actions]]> https://www.researchpad.co/article/elastic_article_7665 Previous research on interlimb coordination has shown that some coordination patterns are more stable than others, and function as attractors in the space of possible phase relations between different rhythmic movements. The canonical coordination patterns, i.e. the two most stable phase relations, are in-phase (0 degree) and anti-phase (180 degrees). Yet, musicians are able to perform other coordination patterns in intrapersonal as well as in interpersonal coordination with remarkable precision. This raises the question of how music experts manage to produce these unstable patterns of movement coordination. In the current study, we invited participants with at least five years of training on a musical instrument. We used an adaptation paradigm to address two factors that may facilitate producing unstable coordination patterns. First, we investigated adaptation in different coordination settings, to test the hypothesis that the lower coupling strength between individuals during joint performance makes it easier to achieve stability outside of the canonical patterns than the stronger coupling during individual bimanual performance. Second, we investigated whether adding to the structure of action effects may support achieving unstable coordination patterns, both intra- and inter-individually. The structure of action effects was strengthened by adding a melodic contour to the action effects, a measure that has been shown to improve the acquisition of bimanual coordination skills. Adaptation performance was measured both in terms of asynchrony and variability thereof. As predicted, we found that producing unstable patterns benefitted from the weaker coupling during joint performance. Surprisingly, the structure of action effects did not help with achieving unstable coordination patterns.

]]>
<![CDATA[Prevalence of PD-L1 expression in matched recurrent and/or metastatic sarcoma samples and in a range of selected sarcomas subtypes]]> https://www.researchpad.co/article/Nd4648af7-aaea-40d4-a97f-7213e9d16a5c

We assessed the frequency of programmed death-ligand 1 (PD-L1) expression by immunohistochemistry (IHC) in a cohort of 522 sarcomas from 457 patients, incuding a subset of 46 patients with 63 matched samples from local recurrence or metastases with primary tumours and/or metachronous metastases. We also investigated the correlation of PD-L1 with the presence and degree of tumour-infiltrating lymphocytes (TILs) in a subset of cases. IHC was performed using the PD-L1 SP263 companion kit (VENTANA) on tissue microarrays from an archival cohort. Evaluation of PD-L1 and TILs was performed on full sections for a subset of 23 cases. Fisher’s exact and Mann Whitney test were used to establish significance (P <0.05). PD-L1 positive expression (≥1%) was identified in 31% of undifferentiated pleomorphic sarcomas, 29% of angiosarcomas, 26% of rhabdomyosarcomas, 18% of myxofibrosarcomas, 11% of leiomyosarcomas and 10% of dedifferentiated liposarcomas. Negative expression was present in all atypical lipomatous tumous/well-differentiated lipoasarcomas, myxoid liposarcomas, synovial sarcomas, pleomorphic liposarcomas, and Ewing sarcomas. PD-L1 IHC was concordant in 81% (38 of 47) of matched/paired samples. PD-L1 IHC was discordant in 19% (9 of 47 matched/paired samples), displaying differences in the proportion of cells expressing PD-L1 amongst paired samples with the percentage of PD-L1-positive cells increasing in the metastatic/recurrent site compared to the primary in 6 of 9 cases (67%). Significant correlation between PD-L1 expression and the degree of TILs was exclusively identified in the general cohort of leiomyosarcomas, but not in other sarcoma subtypes or in metastatic/recurrent samples. We conclude that the prevalence of PD-L1 expression in selected sarcomas is variable and likely to be clone dependent. Importantly, we demonstrated that PD-L1 can objectively increase in a small proportion of metastases/recurrent sarcomas, offering the potential of treatment benefit to immune checkpoint inhibitors in this metastatic setting.

]]>
<![CDATA[The impact of body posture on intrinsic brain activity: The role of beta power at rest]]> https://www.researchpad.co/article/N65f7a4e6-ac5f-46ef-91d2-3d4de84bb5d0

Tying the hands behind the back has detrimental effects on sensorimotor perceptual tasks. Here we provide evidence that beta band oscillatory activity in a resting state condition might play a crucial role in such detrimental effects. EEG activity at rest was measured from thirty young participants (mean age = 24.03) in two different body posture conditions. In one condition participants were required to keep their hands freely resting on the table. In the other condition, participants’ hands were tied behind their back. Increased beta power was observed in the left inferior frontal gyrus during the tied hands condition compared to the free hands condition. A control experiment ruled out alternative explanations for observed change in beta power, including muscle tension. Our findings provide new insights on how body postural manipulations impact on perceptual tasks and brain activity.

]]>
<![CDATA[pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage]]> https://www.researchpad.co/article/N0686bd46-1746-4f66-8610-270f1b75b482

Transparent research in musculoskeletal imaging is fundamental to reliably investigate diseases such as knee osteoarthritis (OA), a chronic disease impairing femoral knee cartilage. To study cartilage degeneration, researchers have developed algorithms to segment femoral knee cartilage from magnetic resonance (MR) images and to measure cartilage morphology and relaxometry. The majority of these algorithms are not publicly available or require advanced programming skills to be compiled and run. However, to accelerate discoveries and findings, it is crucial to have open and reproducible workflows. We present pyKNEEr, a framework for open and reproducible research on femoral knee cartilage from MR images. pyKNEEr is written in python, uses Jupyter notebook as a user interface, and is available on GitHub with a GNU GPLv3 license. It is composed of three modules: 1) image preprocessing to standardize spatial and intensity characteristics; 2) femoral knee cartilage segmentation for intersubject, multimodal, and longitudinal acquisitions; and 3) analysis of cartilage morphology and relaxometry. Each module contains one or more Jupyter notebooks with narrative, code, visualizations, and dependencies to reproduce computational environments. pyKNEEr facilitates transparent image-based research of femoral knee cartilage because of its ease of installation and use, and its versatility for publication and sharing among researchers. Finally, due to its modular structure, pyKNEEr favors code extension and algorithm comparison. We tested our reproducible workflows with experiments that also constitute an example of transparent research with pyKNEEr, and we compared pyKNEEr performances to existing algorithms in literature review visualizations. We provide links to executed notebooks and executable environments for immediate reproducibility of our findings.

]]>
<![CDATA[The faster, the better? Relationships between run-up speed, the degree of difficulty (D-score), height and length of flight on vault in artistic gymnastics]]> https://www.researchpad.co/article/5c99030dd5eed0c484b98b90

On vault in artistic gymnastics, a high run-up speed is thought to be important when performing difficult vaults. To test this assumption in a large cohort of elite athletes, we calculated the correlations between the run-up speed, scores, height and length of flight for handspring-, Tsukahara- and Yurchenko-style vaults and compared the performances of male and female elite and junior athletes (n = 407) during the 2016 European Championships. In females, run-up speed correlated significantly with the difficulty (D-) score and height of flight for all vaulting styles (r ≤ 0.80). In males, run-up speed correlated significantly with the D-score, height and length of flight of Tsukahara (r ≤ 0.69) and Yurchenko vaults only (r ≤ 0.65). Males reached 8–9% higher run-up speeds performing handspring and Tsukahara vaults than did females, but similar run-up speeds performing Yurchenko vaults. Elite females achieved higher run-up speeds than junior females performing Yurchenko vaults. Elite males displayed higher run-up speeds than junior males performing handspring and Tsukahara vaults. We conclude that, in females, more difficult vaults require higher run-up speeds than vaults with lower D-scores and thus, within the measured range of speeds, the faster the run-up, the better, regardless of vaulting style. Males, on the other hand, may not need to exhaust their sprinting capacity, even for the most difficult vaults. Finally, the knowledge of the required run-up speed for each vault helps coaches to estimate each athlete’s potential and/or to focus the training on developing the required physical qualities.

]]>
<![CDATA[The validity, reliability and minimal clinically important difference of the patient specific functional scale in snake envenomation]]> https://www.researchpad.co/article/5c8823c4d5eed0c484638faf

Objective

Valid, reliable, and clinically relevant outcome measures are necessary in clinical studies of snake envenomation. The aim of this study was to evaluate the psychometric (validity and reliability) and clinimetric (minimal clinically important difference [MCID]) properties of the Patient-Specific Functional Scale (PSFS) in snakebite envenomation.

Methods

We performed a secondary analysis of two existing snakebite trials that measured clinical outcomes using the PSFS as well as other quality of life and functional assessments. Data were collected at 3, 7, 10, and 17 days. Reliability was determined using Cronbach’s alpha for internal consistency and the intraclass correlation coefficient (ICC) for temporal stability at 10 and 17 days. Validity was assessed using concurrent validity correlating with the other assessments. The MCID was evaluated using the following criteria: (1) the distribution of stable patients according to both standard error of measurement (SEM) and responsiveness techniques, and (2) anchor-based methods to compare between individuals and to detect discriminant ability of a positive change with a receiver operator characteristic (ROC) curve and optimal cutoff point.

Results

A total of 86 patients were evaluated in this study. The average PSFS scores were 5.37 (SD 3.23), 7.95 (SD 2.22), and 9.12 (SD 1.37) at 3, 7, and 10 days, respectively. Negligible floor effect was observed (maximum of 8% at 3 days); however, a ceiling effect was observed at 17 days (25%). The PSFS showed good reliability with an internal consistency of 0.91 (Cronbach’s alpha) (95% CI 0.88, 0.95) and a temporal stability of 0.83 (ICC) (95% CI 0.72, 0.89). The PSFS showed a strong positive correlation with quality of life and functional assessments. The MCID was approximately 1.0 for all methods.

Conclusions

With an MCID of approximately 1 point, the PSFS is a valid and reliable tool to assess quality of life and functionality in patients with snake envenomation.

]]>
<![CDATA[Implementation of a practical and effective pilot intervention against transmission of Taenia solium by pigs in the Banke district of Nepal]]> https://www.researchpad.co/article/5c7d95d7d5eed0c484734daa

Taenia solium is a zoonotic cestode parasite which causes human neurocysticercosis. Pigs transmit the parasite by acting as the intermediate host. An intervention was implemented to control transmission of T. solium by pigs in Dalit communities of Banke District, Nepal. Every 3 months, pigs were vaccinated with the TSOL18 recombinant vaccine (Cysvax, IIL, India)) and, at the same time, given an oral treatment with 30mg/kg oxfendazole (Paranthic 10% MCI, Morocco). The prevalence of porcine cysticercosis was determined in both an intervention area as well as a similar no intervention control area, among randomly selected, slaughter-age pigs. Post mortem assessments were undertaken both at the start and at the end of the intervention. Participants conducting the post mortem assessments were blinded as to the source of the animals being assessed. At the start of the intervention the prevalence of porcine cysticercosis was 23.6% and 34.5% in the control and intervention areas, respectively. Following the intervention, the prevalence of cysticercosis in pigs from the control area was 16.7% (no significant change), whereas no infection was detected after complete slicing of all muscle tissue and brain in animals from the intervention area (P = 0.004). These findings are discussed in relation to the feasibility and sustainability of T. solium control. The 3-monthly vaccination and drug treatment intervention in pigs used here is suggested as an effective and practical method for reducing T. solium transmission by pigs. The results suggest that applying the intervention over a period of years may ultimately reduce the number of tapeworm carriers and thereby the incidence of NCC.

]]>
<![CDATA[Effects of realistic sheep elbow kinematics in inverse dynamic simulation]]> https://www.researchpad.co/article/5c8823cbd5eed0c48463901b

Looking for new opportunities in mechanical design, we are interested in studying the kinematic behaviour of biological joints. The real kinematic behaviour of the elbow of quadruped animals (which is submitted to high mechanical stresses in comparison with bipeds) remains unexplored. The sheep elbow joint was chosen because of its similarity with a revolute joint. The main objective of this study is to estimate the effects of elbow simplifications on the prediction of joint reaction forces in inverse dynamic simulations. Rigid motions between humerus and radius-ulna were registered during full flexion-extension gestures on five cadaveric specimens. The experiments were initially conducted with fresh specimens with ligaments and repeated after removal of all soft tissue, including cartilage. A digital image correlation system was used for tracking optical markers fixed on the bones. The geometry of the specimens was digitized using a 3D optical scanner. Then, the instantaneous helical axis of the joint was computed for each acquisition time. Finally, an OpenSim musculoskeletal model of the sheep forelimb was used to quantify effects of elbow joint approximations on the prediction of joint reaction forces. The motion analysis showed that only the medial-lateral translation is sufficiently large regarding the measuring uncertainty of the experiments. This translation assimilates the sheep elbow to a screw joint instead of a revolute joint. In comparison with fresh specimens, the experiments conducted with dry bone specimens (bones without soft tissue) provided different kinematic behaviour. From the results of our inverse dynamic simulations, it was noticed that the inclusion of the medial-lateral translation to the model made up with the mean flexion axis does not affect the predicted joint reaction forces. A geometrical difference between the axis of the best fitting cylinder and the mean flexion axis (derived from the motion analysis) of fresh specimens was highlighted. This geometrical difference impacts slightly the prediction of joint reactions.

]]>
<![CDATA[Comparing the diagnostic performance of radiation dose-equivalent radiography, multi-detector computed tomography and cone beam computed tomography for finger fractures – A phantom study]]> https://www.researchpad.co/article/5c8823e0d5eed0c4846391da

Purpose

To compare the diagnostic performance and raters´confidence of radiography, radiography equivalent dose multi-detector computed tomography (RED-MDCT) and radiography equivalent dose cone beam computed tomography (RED-CBCT) for finger fractures.

Methods

Fractures were inflicted artificially and randomly to 10 cadaveric hands of body donors. Radiography as well as RED-MDCT and RED-CBCT imaging were performed at dose settings equivalent to radiography. Images were de-identified and analyzed by three radiologists regarding finger fractures, joint involvement and confidence with their findings. Reference standard was consensus reading by two radiologists of the fracturing protocol and high-dose multi-detector computed tomography (MDCT) images. Sensitivity and specificity were calculated and compared with Cochrane´s Q and post hoc analysis. Rater´s confidence was calculated with Friedman Test and post hoc Nemenyi Test.

Results

Rater´s confidence, inter-rater correlation, specificity for fractures and joint involvement were higher in RED-MDCT and RED-CBCT compared to radiography. No differences between the modalities were found regarding sensitivity.

Conclusion

In this phantom study, radiography equivalent dose computed tomography (RED-CT) demonstrates a partly higher diagnostic accuracy than radiography. Implementing RED-CT in the diagnostic work-up of finger fractures could improve diagnostics, support correct classification and adequate treatment. Clinical studies should be performed to confirm these preliminary results.

]]>
<![CDATA[Is there an accurate relationship between simple self-reported functional limitations and the assessment of physical capacity in early old age?]]> https://www.researchpad.co/article/5c8c194dd5eed0c484b4d398

Study design

Observational study.

Objective

To assess the relationship between individual self-reports and measurements of physical condition in early old age.

Background

The use of self-reported questions assessing physical limitations remains questionable in large epidemiological studies. We aimed to test whether there is an accurate relationship between objective measures of physical capabilities and answers given to questions asked of general early old age populations.

Methods

20,335 subjects (45 to 69 years old) performed two gait speed tests at usual and at rapid speeds, and a hand grip strength test. They also completed an interview which included questions about general and specific limitations on their ability to walk one kilometer, climb stairs, and carry 5 kg over a distance of 10 meters. The questions were coded by the patients on a 4-point scale according to the severity of the limitation. Analyses were performed using description of distributions and related tests were carried out.

Results

A fair association was found between individual self-reports and measurements of physical state: limitations on walking one kilometer and climbing stairs were more closely related to rapid than to usual gait speed and to carrying a 5 kg load. For general limitations, the strength of these associations was weaker than the other scores. The association between hand grip strength and the reported score for carrying a mass was better than that for gait speed tests.

Conclusion

Such simple self-assessment questions on physical performance might be useful tools for evaluating functional limitations across a large early old age population in epidemiological research.

]]>
<![CDATA[Postural control of a musculoskeletal model against multidirectional support surface translations]]> https://www.researchpad.co/article/5c897754d5eed0c4847d2a0a

The human body is a complex system driven by hundreds of muscles, and its control mechanisms are not sufficiently understood. To understand the mechanisms of human postural control, neural controller models have been proposed by different research groups, including our feed-forward and feedback control model. However, these models have been evaluated under forward and backward perturbations, at most. Because a human body experiences perturbations from many different directions in daily life, neural controller models should be evaluated in response to multidirectional perturbations, including in the forward/backward, lateral, and diagonal directions. The objective of this study was to investigate the validity of an NC model with FF and FB control under multidirectional perturbations. We developed a musculoskeletal model with 70 muscles and 15 degrees of freedom of joints, positioned it in a standing posture by using the neural controller model, and translated its support surface in multiple directions as perturbations. We successfully determined the parameters of the neural controller model required to maintain the stance of the musculoskeletal model for each perturbation direction. The trends in muscle response magnitudes and the magnitude of passive ankle stiffness were consistent with the results of experimental studies. We conclude that the neural controller model can adapt to multidirectional perturbations by generating suitable muscle activations. We anticipate that the neural controller model could be applied to the study of the control mechanisms of patients with torso tilt and diagnosis of the change in control mechanisms from patients’ behaviors.

]]>
<![CDATA[A computational scheme for internal models not requiring precise system parameters]]> https://www.researchpad.co/article/5c803c6ed5eed0c484ad895a

Utilization by humans of a precise and adaptable internal model of the dynamics of the body in generating movements is a well-supported concept. The prevailing opinion is that such an internal model ceaselessly develops through long-term repetition and accumulation in the central nervous system (CNS). However, a long-term learning process would not be absolutely necessary for the formation of internal models. It is possible to estimate the dynamics of the system by using a motor command and its resulting output, instead of constructing a model of the dynamics with precise parameters. In this study, a computational model is proposed that uses a motor command and its corresponding output to estimate the dynamics of the system and it is examined whether the proposed model is capable of describing a series of empirical movements. The proposed model was found to be capable of describing humans’ fast movements which require compensation for system dynamics as well as sensory delays. In addition, the proposed model shows equifinality under inertial perturbations as seen in several experimental studies. This satisfactory reproducibility of the proposed computation raises the possibility that humans make a movement by estimating the system dynamics with a copy of motor command and sensory output on a momentary basis, without the need to identify precise system parameters.

]]>
<![CDATA[The effect of contact sport expertise on postural control]]> https://www.researchpad.co/article/5c6f14f5d5eed0c48467abb2

It has been demonstrated that expertise in sport influences standing balance ability. However, little is known concerning how physical contact in sport affects balance ability. The aim of this study was to examine whether differences between contact and limited-contact sport experiences results in differences in postural control. Twenty male collegiate athletes (10 soccer/contact, 10 baseball/limited contact) and ten male untrained students stood quietly on a force plate under various bipedal and unipedal conditions, with and without vision. Significant differences for sway area and COP speed were found between the soccer players and the other two groups for unipedal stances without vision. Soccer players were found to have superior postural control compared with participants involved in limited contact sport or no sport at all. Contact sports may lead to increased postural control through enhanced use of proprioceptive and vestibular information.

]]>
<![CDATA[Affordable gait analysis using augmented reality markers]]> https://www.researchpad.co/article/5c6f1519d5eed0c48467adab

A typical optical based gait analysis laboratory uses expensive stereophotogrammetric motion capture systems. The study aims to propose and validate an affordable gait analysis method using augmented reality (AR) markers with a single action camera. Image processing software calculates the position and orientation of the AR markers. Anatomical landmark calibration is applied on the subject to calibrate each of the anatomical points with respect to their corresponding AR markers. This way, anatomical points are tracked through AR markers using homogeneous coordinate transformations, and the further processing of gait analysis is identical with conventional solutions. The proposed system was validated on nine participants of varying age using a conventional motion capture system on simultaneously measured treadmill gait trials on 2, 3 and 4.5 km/h walking speeds. Coordinates of the virtual anatomical points were compared using the Bland-Altman analysis. Spatial-temporal gait parameters (step length, stride length, walking base, cadence, pelvis range of motion) and angular gait parameters (range of motion of knee, hip and pelvis angles) were compared between measurement systems by RMS error and Bland-Altman analysis. The proposed method shows some differences in the raw coordinates of virtually tracked anatomical landmarks and gait parameters compared to the reference system. RMS errors of spatial parameters were below 23 mm, while the angular range of motion RMS errors varies from 2.55° to 6.73°. Some of these differences (e.g. knee angle range of motion) is comparable to previously reported differences between commercial motion capture systems and gait variability. The proposed method can be a very cheap gait analysis solution, but precision is not guaranteed for every aspect of gait analysis using the currently exemplified implementation of the AR marker tracking approach.

]]>
<![CDATA[Reliability of a new analysis to compute time to stabilization following a single leg drop jump landing in children]]> https://www.researchpad.co/article/5c6c75d0d5eed0c4843d024a

Although a number of different methods have been proposed to assess the time to stabilization (TTS), none is reliable in every axis and no tests of this type have been carried out on children. The purpose of this study was thus to develop a new computational method to obtain TTS using a time-scale (frequency) approach [i.e. continuous wavelet transformation (WAV)] in children. Thirty normally-developed children (mean age 10.16 years, SD = 1.52) participated in the study. Every participant performed 30 single-leg drop jump landings with the dominant lower limb (barefoot) on a force plate from three different heights (15cm, 20cm and 25cm). Five signals were used to compute the TTS: i) Raw, ii) Root mean squared, iii) Sequential average processing, iv) the fitting curve of the signal using an unbounded third order polynomial fit, and v) WAV. The reliability of the TTS was determined by computing both the Intraclass Correlation Coefficient (ICC) and the Standard Error of the Measurement (SEM).In the antero-posterior and vertical axes, the values obtained with the WAV signal from all heights were similar to those obtained by raw, root mean squared and sequential average processing. The values obtained for the medio-lateral axis were relatively small. This WAV provided substantial-to-good ICC values and low SEM for almost all the axes and heights. The results of the current study thus suggest the WAV method could be used to compute overall TTS when studying children’s dynamic postural stability.

]]>
<![CDATA[Interventions to improve the quality of bystander cardiopulmonary resuscitation: A systematic review]]> https://www.researchpad.co/article/5c6dc9b8d5eed0c48452a083

Background

Performing high-quality bystander cardiopulmonary resuscitation (CPR) improves the clinical outcomes of victims with sudden cardiac arrest. Thus far, no systematic review has been performed to identify interventions associated with improved bystander CPR quality.

Methods

We searched Ovid MEDLINE, Ovid EMBASE, EBSCO CINAHL, Ovid PsycInfo, Thomson Reuters SCI-EXPANDED, and the Cochrane Central Register of Controlled Trials to retrieve studies published from 1 January 1966 to 5 October 2018 associated with interventions that could improve the quality of bystander CPR. Data regarding participant characteristics, interventions, and design and outcomes of included studies were extracted.

Results

Of the initially identified 2,703 studies, 42 were included. Of these, 32 were randomized controlled trials. Participants included adults, high school students, and university students with non-medical professional majors. Interventions improving bystander CPR quality included telephone dispatcher-assisted CPR (DA-CPR) with simplified or more concrete instructions, compression-only CPR, and other on-scene interventions, such as four-hand CPR for elderly rescuers, kneel on opposite sides for two-person CPR, and CPR with heels for a tired rescuer. Devices providing real-time feedback and mobile devices containing CPR applications or software were also found to be beneficial in improving the quality of bystander CPR. However, using mobile devices for improving CPR quality or for assisting DA-CPR might cause rescuers to delay starting CPR.

Conclusions

To further improve the clinical outcomes of victims with cardiac arrest, these effective interventions may be included in the guidelines for bystander CPR.

]]>
<![CDATA[Multifractality of posture modulates multisensory perception of stand-on-ability]]> https://www.researchpad.co/article/5c6c7582d5eed0c4843cfe31

By definition, perception is a multisensory process that unfolds in time as a complex sequence of exploratory activities of the organism. In such a system perception and action are integrated, and multiple energy arrays are available simultaneously. Perception of affordances interweaves sensory and motor activities into meaningful behavior given task constraints. The present contribution offers insight into the manner in which perception and action usher the organism through competent functional apprehension of its surroundings. We propose that the tensegrity structure of the body, manifested via multifractality of exploratory bodily movements informs perception of affordances. The affordance of stand-on-ability of ground surfaces served as the experimental paradigm. Observers viewed a surface set to a discrete angle and attempted to match it haptically with a continuously adjustable surface occluded by a curtain, or felt an occluded surface set to a discrete angle then matched it visually with a continuously adjustable visible surface. The complex intertwining of perception and action was demonstrated by the interactions of multifractality of postural sway with multiple energy arrays, responses, and changing geometric task demands.

]]>
<![CDATA[Minimal force transmission between human thumb and index finger muscles under passive conditions]]> https://www.researchpad.co/article/5c706784d5eed0c4847c7163

It has been hypothesized that force can be transmitted between adjacent muscles. Intermuscle force transmission violates the assumption that muscles act in mechanical isolation, and implies that predictions from biomechanical models are in error due to mechanical interactions between muscles, but the functional relevance of intermuscle force transmission is unclear. To investigate intermuscle force transmission between human flexor pollicis longus and the index finger part of flexor digitorum profundus, we compared finger flexion force produced by passive thumb flexion after one of three conditioning protocols: passive thumb flexion-extension cycling, thumb flexion maximal voluntary contraction (MVC), and thumb extension stretch. Finger flexion force increased after all three conditions. Compared to passive thumb flexion-extension cycling, change in finger flexion force was less after thumb extension stretch (mean difference 0.028 N, 95% CI 0.005 to 0.051 N), but not after thumb flexion MVC (0.007 N, 95% CI -0.020 to 0.033 N). As muscle conditioning changed finger flexion force produced by passive thumb flexion, the change in force is likely due to intermuscle force transmission. Thus, intermuscle force transmission resulting from passive stretch of an adjacent muscle is probably small enough to be ignored.

]]>
<![CDATA[Virtual supersampling as post-processing step preserves the trabecular bone morphometry in human peripheral quantitative computed tomography scans]]> https://www.researchpad.co/article/5c6dc9e5d5eed0c48452a446

In the clinical field of diagnosis and monitoring of bone diseases, high-resolution peripheral quantitative computed tomography (HR-pQCT) is an important imaging modality. It provides a resolution where quantitative bone morphometry can be extracted in vivo on patients. It is known that HR-pQCT provides slight differences in morphometric indices compared to the current standard approach micro-computed tomography (micro-CT). The most obvious reason for this is the restriction of the radiation dose and with this a lower image resolution. With advances in micro-CT evaluation techniques such as patient-specific remodeling simulations or dynamic bone morphometry, a higher image resolution would potentially also allow the application of such novel evaluation techniques to clinical HR-pQCT measurements. Virtual supersampling as post-processing step was considered to increase the image resolution of HR-pQCT scans. The hypothesis was that this technique preserves the structural bone morphometry. Supersampling from 82 μm to virtual 41 μm by trilinear interpolation of the grayscale values of 42 human cadaveric forearms resulted in strong correlations of structural parameters (R2: 0.96–1.00). BV/TV was slightly overestimated (4.3%, R2: 1.00) compared to the HR-pQCT resolution. Tb.N was overestimated (7.47%; R2: 0.99) and Tb.Th was slightly underestimated (-4.20%; R2: 0.98). The technique was reproducible with PE%CV between 1.96% (SMI) and 7.88% (Conn.D). In a clinical setting with 205 human forearms with or without fracture measured at 82 μm resolution HR-pQCT, the technique was sensitive to changes between groups in all parameters (p < 0.05) except trabecular thickness. In conclusion, we demonstrated that supersampling preserves the bone morphometry from HR-pQCT scans and is reproducible and sensitive to changes between groups. Supersampling can be used to investigate on the resolution dependency of HR-pQCT images and gain more insight into this imaging modality.

]]>