ResearchPad - bovines https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Virulence factors and antibiograms of <i>Escherichia coli</i> isolated from diarrheic calves of Egyptian cattle and water buffaloes]]> https://www.researchpad.co/article/elastic_article_8462 Diarrhea caused by Escherichia coli in calves is an important problem in terms of survivability, productivity and treatment costs. In this study, 88 of 150 diarrheic animals tested positive for E. coli. Of these, 54 samples had mixed infection with other bacterial and/or parasitic agents. There are several diarrheagenic E. coli pathotypes including enteropathogenic E. coli (EPEC), Shiga-toxin producing E. coli (STEC), enterotoxigenic E. coli (ETEC) and necrotoxigenic E. coli (NTEC). Molecular detection of virulence factors Stx2, Cdt3, Eae, CNF2, F5, Hly, Stx1, and ST revealed their presence at 39.7, 27.2, 19.3, 15.9, 13.6, 9.0, 3.4, and 3.4 percent, respectively. As many as 13.6% of the isolates lacked virulence genes and none of the isolate had LT or CNF1 toxin gene. The odds of isolating ETEC from male calves was 3.6 times (95% CI: 1.1, 12.4; P value = 0.042) that of female calves, whereas the odds of isolating NTEC from male calves was 72.9% lower (95% CI: 91.3% lower, 15.7% lower; P value = 0.024) than that in females. The odds of isolating STEC in winter was 3.3 times (95% CI: 1.1, 10.3; P value = 0.037) that of spring. Antibiograms showed 48 (54.5%) of the isolates to be multi-drug resistant. The percent resistance to tetracycline, streptomycin, ampicillin, and trimethoprim-sulfamethoxazole was 79.5, 67.0, 54.5, and 43.0, respectively. Ceftazidime (14.8%), amoxicillin-clavulanic acid (13.6%) and aztreonam (11.3%) showed the lowest resistance, and none of the isolates was resistant to imipenem. The results of this study can help improve our understanding of the epidemiological aspects of E. coli infection and to devise strategies for protection against it. The prevalence of E. coli pathotypes can help potential buyers of calves to avoid infected premises. The antibiograms in this study emphasizes the risks associated with the random use of antibiotics.

]]>
<![CDATA[Risk factors associated to a high Mycobacterium tuberculosis complex seroprevalence in wild boar (Sus scrofa) from a low bovine tuberculosis prevalence area]]> https://www.researchpad.co/article/Nfbbd03ef-7cb8-4d82-b605-16cf8ee0d77e

Animal tuberculosis is a worldwide zoonotic disease caused principally by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTC). In southern Iberian Peninsula, wild reservoirs such as the wild boar, among other factors, have prevented the eradication of bovine tuberculosis. However, most of the studies have been focused on south-central Spain, where the prevalence of tuberculosis is high among wild ungulates and cattle herds. In northern regions, where wild boar density and bovine tuberculosis prevalence are lower, fewer studies have been carried out and the role of this species is still under debate. The aim of this study was to describe the temporal and spatial distribution of antibodies against MTC in wild boar from the Basque Country, northern Spain. Sera from 1902 animals were collected between 2010 and 2016. The seroprevalence was determined with an in house enzyme-linked immunosorbent assay and the search of risk factors was assessed by Generalized Linear Models. Overall, 17% of wild boars (326/1902; 95%CI, [15.5%–18.9%]) showed antibodies against MTC. Risk factors associated with seropositivity were the year and location of sampling, the number of MTC positive cattle, the distance to positive farms and the percentage of shrub cover. Younger age classes were associated with increased antibody titres among seropositive individuals. The seroprevalence detected was higher than those previously reported in neighbouring regions. Hence, further studies are needed to better understand the role of wild boar in the epidemiology of tuberculosis in low tuberculosis prevalence areas and consequently, its relevance when developing control strategies.

]]>
<![CDATA[Quantitative dynamics of Salmonella and E. coli in feces of feedlot cattle treated with ceftiofur and chlortetracycline]]> https://www.researchpad.co/article/Nd45d35d0-8623-4716-b387-5e4fac70c4ad

Antibiotic use in beef cattle is a risk factor for the expansion of antimicrobial-resistant Salmonella populations. However, actual changes in the quantity of Salmonella in cattle feces following antibiotic use have not been investigated. Previously, we observed an overall reduction in Salmonella prevalence in cattle feces associated with both ceftiofur crystalline-free acid (CCFA) and chlortetracycline (CTC) use; however, during the same time frame the prevalence of multidrug-resistant Salmonella increased. The purpose of this analysis was to quantify the dynamics of Salmonella using colony counting (via a spiral-plating method) and hydrolysis probe-based qPCR (TaqMan® qPCR). Additionally, we quantified antibiotic-resistant Salmonella by plating to agar containing antibiotics at Clinical & Laboratory Standards Institute breakpoint concentrations. Cattle were randomly assigned to 4 treatment groups across 16 pens in 2 replicates consisting of 88 cattle each. Fecal samples from Days 0, 4, 8, 14, 20, and 26 were subjected to quantification assays. Duplicate qPCR assays targeting the Salmonella invA gene were performed on total community DNA for 1,040 samples. Diluted fecal samples were spiral plated on plain Brilliant Green Agar (BGA) and BGA with ceftriaxone (4 μg/ml) or tetracycline (16 μg/ml). For comparison purposes, indicator non-type-specific (NTS) E. coli were also quantified by direct spiral plating. Quantity of NTS E. coli and Salmonella significantly decreased immediately following CCFA treatment. CTC treatment further decreased the quantity of Salmonella but not NTS E. coli. Effects of antibiotics on the imputed log10 quantity of Salmonella were analyzed via a multi-level mixed linear regression model. The invA gene copies decreased with CCFA treatment by approximately 2 log10 gene copies/g feces and remained low following additional CTC treatment. The quantities of tetracycline or ceftriaxone-resistant Salmonella were approximately 4 log10 CFU/g feces; however, most of the samples were under the quantification limit. The results of this study demonstrate that antibiotic use decreases the overall quantity of Salmonella in cattle feces in the short term; however, the overall quantities of antimicrobial-resistant NTS E. coli and Salmonella tend to remain at a constant level throughout.

]]>
<![CDATA[Individual-based network model for Rift Valley fever in Kabale District, Uganda]]> https://www.researchpad.co/article/5c8823c9d5eed0c484638ffb

Rift Valley fever (RVF) is a zoonotic disease, that causes significant morbidity and mortality among ungulate livestock and humans in endemic regions. In East Africa, the causative agent of the disease is Rift Valley fever virus (RVFV) which is primarily transmitted by multiple mosquito species in Aedes and Mansonia genera during both epizootic and enzootic periods in a complex transmission cycle largely driven by environmental and climatic factors. However, recent RVFV activity in Uganda demonstrated the capability of the virus to spread into new regions through livestock movements, and underscored the need to develop effective mitigation strategies to reduce transmission and prevent spread among cattle populations. We simulated RVFV transmission among cows in 22 different locations of the Kabale District in Uganda using real world livestock data in a network-based model. This model considered livestock as a spatially explicit factor in different locations subjected to specific vector and environmental factors, and was configured to investigate and quantitatively evaluate the relative impacts of mosquito control, livestock movement, and diversity in cattle populations on the spread of the RVF epizootic. We concluded that cattle movement should be restricted for periods of high mosquito abundance to control epizootic spreading among locations during an RVF outbreak. Importantly, simulation results also showed that cattle populations with heterogeneous genetic diversity as crossbreeds were less susceptible to infection compared to homogenous cattle populations.

]]>
<![CDATA[Variance components for bovine tuberculosis infection and multi-breed genome-wide association analysis using imputed whole genome sequence data]]> https://www.researchpad.co/article/5c6f1539d5eed0c48467af0c

Bovine tuberculosis (bTB) is an infectious disease of cattle generally caused by Mycobacterium bovis, a bacterium that can elicit disease humans. Since the 1950s, the objective of the national bTB eradication program in Republic of Ireland was the biological extinction of bTB; that purpose has yet to be achieved. Objectives of the present study were to develop the statistical methodology and variance components to undertake routine genetic evaluations for resistance to bTB; also of interest was the detection of regions of the bovine genome putatively associated with bTB infection in dairy and beef breeds. The novelty of the present study, in terms of research on bTB infection, was the use of beef breeds in the genome-wide association and the utilization of imputed whole genome sequence data. Phenotypic bTB data on 781,270 animals together with imputed whole genome sequence data on 7,346 of these animals’ sires were available. Linear mixed models were used to quantify variance components for bTB and EBVs were validated. Within-breed and multi-breed genome-wide associations were undertaken using a single-SNP regression approach. The estimated genetic standard deviation (0.09), heritability (0.12), and repeatability (0.30) substantiate that genetic selection help to eradicate bTB. The multi-breed genome-wide association analysis identified 38 SNPs and 64 QTL regions associated with bTB infection; two QTL regions (both on BTA23) identified in the multi-breed analysis overlapped with the within-breed analyses of Charolais, Limousin, and Holstein-Friesian. Results from the association analysis, coupled with previous studies, suggest bTB is controlled by an infinitely large number of loci, each having a small effect. The methodology and results from the present study will be used to develop national genetic evaluations for bTB in the Republic of Ireland. In addition, results can also be used to help uncover the biological architecture underlying resistance to bTB infection in cattle.

]]>
<![CDATA[Validation of a simple sample preparation method for multielement analysis of bovine serum]]> https://www.researchpad.co/article/5c633931d5eed0c484ae61f2

Here we propose a single acid digestion (SAD) sample preparation method for ICP-MS analysis of animal serum samples to determine trace element contents. The method was evaluated in comparison with a commonly used procedure involving dilution of samples in an alkaline solution (AKD). In the SAD procedure, aliquots (1 mL) of bovine serum samples were treated at low temperature with a mixture of concentrated nitric acid and hydrogen peroxide. Trace elements (As, B, Ba, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Se, Sr, U, and Zn) were directly determined by ICP-MS analysis of diluted solutions of samples. Both methods were sufficiently sensitive to enable quantification of most trace elements, with the exception of the AKD method for Cd, Hg and Pb. The quality of the data was verified by using certified reference material. Good results were obtained for the SAD procedure and all elements, but recoveries were unacceptable with the AKD procedure for Se (recovery: 57%), Cd (154%) and Fe (139%). Strong associations (R2>0.90, P = 0.000) between the data obtained by both methods were demonstrated for the elements considered. The proposed SAD sample preparation method produced satisfactory results for determining most toxic and essential trace elements targeted in monitoring studies.

]]>
<![CDATA[How many to sample? Statistical guidelines for monitoring animal welfare outcomes]]> https://www.researchpad.co/article/5c5b524fd5eed0c4842bc630

There is increasing scrutiny of the animal welfare impacts of all animal use activities, including agriculture, the keeping of companion animals, racing and entertainment, research and laboratory use, and wildlife management programs. A common objective of animal welfare monitoring is to quantify the frequency of adverse animal events (e.g., injuries or mortalities). The frequency of such events can be used to provide pass/fail grades for animal use activities relative to a defined threshold and to identify areas for improvement through research. A critical question in these situations is how many animals should be sampled? There are, however, few guidelines available for data collection or analysis, and consequently sample sizes can be highly variable. To address this question, we first evaluated the effect of sample size on precision and statistical power in reporting the frequency of adverse animal welfare outcomes. We next used these findings to assess the precision of published animal welfare investigations for a range of contentious animal use activities, including livestock transport, horse racing, and wildlife harvesting and capture. Finally, we evaluated the sample sizes required for comparing observed outcomes with specified standards through hypothesis testing. Our simulations revealed that the sample sizes required for reasonable levels of precision (i.e., proportional distance to the upper confidence interval limit (δ) of ≤ 0.50) are greater than those that have been commonly used for animal welfare assessments (i.e., >300). Larger sample sizes are required for adverse events with low frequency (i.e., <5%). For comparison with a required threshold standard, even larger samples sizes are required. We present guidelines, and an online calculator, for minimum sample sizes for use in future animal welfare assessments of animal management and research programs.

]]>
<![CDATA[Comparative transcriptome analysis of mammary epithelial cells at different stages of lactation reveals wide differences in gene expression and pathways regulating milk synthesis between Jersey and Kashmiri cattle]]> https://www.researchpad.co/article/5c633941d5eed0c484ae633a

Jersey and Kashmiri cattle are important dairy breeds that contribute significantly to the total milk production of the Indian northern state of Jammu and Kashmir. The Kashmiri cattle germplasm has been extensively diluted through crossbreeding with Jersey cattle with the goal of enhancing its milk production ability. However, crossbred animals are prone to diseases resulting to unsustainable milk production. This study aimed to provide a comprehensive transcriptome profile of mammary gland epithelial cells at different stages of lactation and to find key differences in genes and pathways regulating milk traits between Jersey and Kashmiri cattle. Mammary epithelial cells (MEC) isolated from milk obtained from six lactating cows (three Jersey and three Kashmiri cattle) on day 15 (D15), D90 and D250 in milk, representing early, mid and late lactation, respectively were used. RNA isolated from MEC was subjected to next-generation RNA sequencing and bioinformatics processing. Casein and whey protein genes were found to be highly expressed throughout the lactation stages in both breeds. Largest differences in differentially expressed genes (DEG) were between D15 vs D90 (1,805 genes) in Kashmiri cattle and, D15 vs D250 (3,392 genes) in Jersey cattle. A total of 1,103, 1,356 and 1,397 genes were differentially expressed between Kashmiri and Jersey cattle on D15, D90 and D250, respectively. Antioxidant genes like RPLPO and RPS28 were highly expressed in Kashmiri cattle. Differentially expressed genes in both Kashmiri and Jersey were enriched for multicellular organismal process, receptor activity, catalytic activity, signal transducer activity, macromolecular complex and developmental process gene ontology terms. Whereas, biological regulation, endopeptidase activity and response to stimulus were enriched in Kashmiri cattle and, reproduction and immune system process were enriched in Jersey cattle. Most of the pathways responsible for regulation of milk production like JAK-STAT, p38 MAPK pathway, PI3 kinase pathway were enriched by DEG in Jersey cattle only. Although Kashmiri has poor milk production efficiency, the present study suggests possible physicochemical and antioxidant properties of Kashmiri cattle milk that needs to be further explored.

]]>
<![CDATA[Low-cost cross-taxon enrichment of mitochondrial DNA using in-house synthesised RNA probes]]> https://www.researchpad.co/article/5c61e92ed5eed0c48496f93a

Hybridization capture with in-solution oligonucleotide probes has quickly become the preferred method for enriching specific DNA loci from degraded or ancient samples prior to high-throughput sequencing (HTS). Several companies synthesize sets of probes for in-solution hybridization capture, but these commercial reagents are usually expensive. Methods for economical in-house probe synthesis have been described, but they do not directly address one of the major advantages of commercially synthesised probes: that probe sequences matching many species can be synthesised in parallel and pooled. The ability to make “phylogenetically diverse” probes increases the cost-effectiveness of commercial probe sets, as they can be used across multiple projects (or for projects involving multiple species). However, it is labour-intensive to replicate this with in-house methods, as template molecules must first be generated for each species of interest. While it has been observed that probes can be used to enrich for phylogenetically distant targets, the ability of this effect to compensate for the lack of phylogenetically diverse probes in in-house synthesised probe sets has not been tested. In this study, we present a refined protocol for in-house RNA probe synthesis and evaluated the ability of probes generated using this method from a single species to successfully enrich for the target locus in phylogenetically distant species. We demonstrated that probes synthesized using long-range PCR products from a placental mammal mitochondrion (Bison spp.) could be used to enrich for mitochondrial DNA in birds and marsupials (but not plants). Importantly, our results were obtained for approximately a third of the cost of similar commercially available reagents.

]]>
<![CDATA[In-plate recapturing of a dual-tagged recombinant Fasciola antigen (FhLAP) by a monoclonal antibody (US9) prevents non-specific binding in ELISA]]> https://www.researchpad.co/article/5c5df361d5eed0c4845811da

Recombinant proteins expressed in E. coli are frequently purified by immobilized metal affinity chromatography (IMAC). By means of this technique, tagged proteins containing a polyhistidine sequence can be obtained up to 95% pure in a single step, but some host proteins also bind with great affinity to metal ions and contaminate the sample. A way to overcome this problem is to include a second tag that is recognized by a preexistent monoclonal antibody (mAb) in the gene encoding the target protein, allowing further purification. With this strategy, the recombinant protein can be directly used as target in capture ELISA using plates sensitized with the corresponding mAb. As a proof of concept, in this study we engineered a Trichinella-derived tag (MTFSVPIS, recognized by mAb US9) into a His-tagged recombinant Fasciola antigen (rFhLAP) to make a new chimeric recombinant protein (rUS9-FhLAP), and tested its specificity in capture and indirect ELISAs with sera from sheep and cattle. FhLAP was selected since it was previously reported to be immunogenic in ruminants and is expressed in soluble form in E. coli, which anticipates a higher contamination by host proteins than proteins expressed in inclusion bodies. Our results showed that a large number of sera from non-infected ruminants (mainly cattle) reacted in indirect ELISA with rUS9-FhLAP after single-step purification by IMAC, but that this reactivity disappeared testing the same antigen in capture ELISA with mAb US9. These results demonstrate that the 6XHis and US9 tags can be combined when double purification of recombinant proteins is required.

]]>
<![CDATA[Development of a novel fusion protein with Anaplasma marginale and A. centrale MSP5 improved performance of Anaplasma antibody detection by cELISA in infected and vaccinated cattle]]> https://www.researchpad.co/article/5c5217b1d5eed0c4847943a4

Detection of antibodies to Anaplasma spp. using commercial competitive enzyme-linked immunosorbent assay (ccELISA) is based on the recombinant major surface protein 5 fused to maltose binding protein (MBP-MSP5) or glutathione S-transferase (GST-MSP5). To avoid false positive reactions due to the presence of antibodies against E. coli MBP in cattle, previous sera absorption is required. This study evaluated the replacement of MBP-MSP5 or GST-MSP5 antigens by the truncate MSP5 (residues 28–210) of A. marginale (tMSP5m), A. centrale (tMSP5c) and fusion protein MSP5 (tMSP5cm), expressed without N-terminus transmembrane helix in the ccELISA test. Immunoreactivity was evaluated by western blot using monoclonal antibodies against the tMSP5 and by in-house cELISA (hcELISA) with purified tMSP5m, tMSP5c or tMSP5cm using sera from cattle infected with A. marginale (n = 226) or vaccinated with A. centrale (n = 173) and uninfected cattle (n = 216). Results of hcELISA were compared with those of ccELISA. Recombinant protein was expressed highly soluble (> 95%) in E. coli without a molecular chaperone. Specificity of the hcELISA-tMSP5m, -MSP5c or -tMSP5cm was identical to (99.5%) and greater than that in ccELISA (96.3%). Sensitivity of hcELISA-tMSP5m and ccELISA was identical (95.5%), but lower than that of hcELISA-tMSP5cm (96.2%) and -tMSP5c (97.2%). The analysis of vaccinated cattle by hcELISA-tMSP5c showed sensitivity of 99.4%. In summary, the generation of fusion MSP5 A. marginale-A. centrale protein without transmembrane helix was a very effective method to express the recombinant protein highly soluble in the bacterial cytoplasm and contributed to an increased test performance for detecting antibodies in cattle naturally infected with A. marginale or vaccinated with A. centrale.

]]>
<![CDATA[Genetic and genomic analyses of testicular hypoplasia in Nellore cattle]]> https://www.researchpad.co/article/5c536b9dd5eed0c484a48dc9

Reproductive performance is a key indicator of the long-term sustainability of any livestock production system. Testicular hypoplasia (TH) is a morphological and functional reproductive disorder that affects bulls around the world and consequently causes major economic losses due to reduced fertility rates. Despite the improvements in management practices to enhance performance of affected animals, the use of hypoplastic animals for reproduction might contribute to expand the prevalence of this disorder. The aim of this study was to identify genomic regions that are associated with TH in Nellore cattle by performing a genome-wide association study (GWAS) and functional analyses. Phenotypic and pedigree data from 47,563 animals and genotypes (500,689 Single Nucleotide Polymorphism, SNPs) from 265 sires were used in this study. TH was evaluated as a binary trait measured at 18 months of age. The estimated breeding values (EBVs) were calculated by fitting a single-trait threshold animal model using a Bayesian approach. The SNP effects were estimated using the Bayes C method and de-regressed EBVs for TH as the response variable (pseudo-phenotype). The top-15 ranking windows (5-adjacent SNPs) that explained the highest proportion of variance were identified for further functional and biological network analyses. The posterior mean (95% highest posterior density) of the heritability for TH was 0.16 (0.08; 0.23). The most important genomic windows were located on BTA1, BTA3, BTA4, BTA5, BTA9, BTA22, BTA23, and BTA25. These windows explained together 22.69% of the total additive genetic variance for TH. Strong candidate genes associated with metabolism and synthesis of steroids, cell survival, spermatogenesis process and sperm motility were identified, which might play an important role in the expression of TH. Our findings contribute to a better biological understanding of TH and future characterization of causal variants might enable improved genomic prediction of this trait in beef cattle.

]]>
<![CDATA[Comparison of two bovine serum pregnancy tests in detection of artificial insemination pregnancies and pregnancy loss in beef cattle]]> https://www.researchpad.co/article/5c5217cbd5eed0c4847945d9

Blood tests for early detection of pregnancy in cattle based on pregnancy-associated glycoproteins (PAGs) are commercially available. The objective of these studies were to compare the accuracy of blood tests to transrectal ultrasonography in detecting AI pregnancies, and to compare the accuracy of blood tests in predicting pregnancy loss. Beef cattle from 6 herds were synchronized using a recommended CIDR based protocol (Study 1: n = 460; Study 2: n = 472). Pregnancy status was determined by transrectal ultrasonography between days 28–40 following AI, blood samples were collected at this time. In study 2 a final pregnancy determination was performed at the end of the breeding season to determine pregnancy loss. Each serum sample was examined for PAG concentrations using a microtiter plate reader and/or scored by two technicians blind to pregnancy status and pregnancy loss. For study 1 Cohen’s kappa statistics were calculated to assess the agreement between each test and transrectal ultrasonography. For study 2 data was analyzed using the GLIMMIX procedure of SAS with herd as a random effect, and loss, age, and their interaction included in the model. Agreement was good to very good for each test. There was no difference (P = 0.79) in sensitivity, but a difference (P<0.01) in specificity of the assays (88%, 64%, 87%, 90%) and in the overall percent correct (93%, 84%, 93%, 93%). There was an effect of pregnancy loss (P = 0.04), age (P = 0.0002), and their interaction (P = 0.06) on PAG concentrations. In conclusion both pregnancy tests were accurate at detecting AI pregnancies, and were in very good agreement with transrectal ultrasonography. Both tests detected differences in PAGs among females that maintained and lost pregnancy; however, prediction proved to be difficult as most females were above the threshold and would have been considered pregnant on the day of testing.

]]>
<![CDATA[A simple method to estimate the number of doses to include in a bank of vaccines. The case of Lumpy Skin Disease in France]]> https://www.researchpad.co/article/5c57e6d7d5eed0c484ef3f58

A simple method to estimate the size of the vaccine bank needed to control an epidemic of an exotic infectious disease in case of introduction into a country is presented. The method was applied to the case of a Lumpy Skin disease (LSD) epidemic in France. The size of the stock of vaccines needed was calculated based on a series of simple equations that use some trigonometric functions and take into account the spread of the disease, the time required to obtain good vaccination coverage and the cattle density in the affected region. Assuming a 7-weeks period to vaccinate all the animals and a spread of the disease of 7.3 km/week, the vaccination of 740 716 cattle would be enough to control an epidemic of LSD in France in 90% of the simulations (608 196 cattle would cover 75% of the simulations). The results of this simple method were then validated using a dynamic simulation model, which served as reference for the calculation of the vaccine stock required. The differences between both models in different scenarios, related with the time needed to vaccinate the animals, ranged from 7% to 10.5% more vaccines using the simple method to cover 90% of the simulations, and from 9.0% to 13.8% for 75% of the simulations. The model is easy to use and may be adapted for the control of different diseases in different countries, just by using some simple formulas and few input data.

]]>
<![CDATA[Spatio-temporal trends in the frequency of interspecific interactions between domestic and wild ungulates from Mediterranean Spain]]> https://www.researchpad.co/article/5c57e6f0d5eed0c484ef4460

Controlling infections shared by wildlife and livestock requires the understanding and quantification of interspecific interactions between the species involved. This is particularly important in extensive multi-host systems, in which controlled domestic animals interact with uncontrolled, abundant and expanding wild species, such as wild ungulates. We have, therefore, quantified the interspecific interactions between wild boar (Sus scrofa) and free-ranging cattle in Mediterranean Spain, along with their spatio-temporal variability. GPS-GSM-collars were used to monitor 12 cows and 14 wild boar in the Doñana National Park between 2011 and 2013. Interactions were defined as encounters between cattle and wild boar within a spatio-temporal window of 52 m and 1 hour. On average, each wild boar interacted with one cow 1.5 ± (SE) 0.5 times per day, while each cow interacted with one wild boar 1.3 ± 0.4 times per day. The frequency of interaction was significantly higher during crepuscular hours owing to the overlap of both species’ activity, and also during spring and autumn, probably owing to a higher individual aggregation around shared resources. Finally, the frequency of interaction was higher near the most significant shared resources (e.g. water points) but was lower in areas with dense vegetation. The results presented here show the usefulness of GPS monitoring as regards quantifying interactions and helping to clarify the process of pathogen transmission at the wildlife-livestock interface in Mediterranean Spain, along with the main spatio-temporal risk factors. In a changing scenario in which European populations of wild ungulates are increasing, more efficient measures with which to control interactions are required to meet the demands of farmers and managers. Our results, therefore, provide directional hypotheses that could be used to design disease control programmes.

]]>
<![CDATA[Inappropriate usage of selected antimicrobials: Comparative residue proportions in rural and urban beef in Uganda]]> https://www.researchpad.co/article/5c40f7dcd5eed0c484386b13

Introduction

In most developing countries like Uganda, antimicrobials including β-lactams and tetracyclines are used indiscriminately in livestock. When livestock get sick and treatment is necessary, some producers and veterinarians use these drugs with minimal controls to prevent residues from occurring in the beef sent to markets. This study was done to determine the presence of drug residues above acceptable limits of two commonly used antimicrobials in Uganda’s rural and urban beef.

Methods

A cross-sectional study was conducted of 134 cattle carcasses from eight different slaughter slabs over twelve weeks. This study entailed 81 samples of rural and 53 samples of urban origin. To enable detailed analysis these samples were categorized according to age (maturity), breed, and sex. For each of the 134 carcasses, three samples of liver, kidney and muscle were taken and homogeneously mixed into one sample, which was tested for β-lactam and tetracycline drug residues.

Results

The results were statistically significant for β-lactam levels (χ2 = 22.10, df = 10, p = 0.0146) with average concentration (μg/kg) of 2.93:29.3 (rural: urban), though not for tetracycline levels (χ2 = 3.594, df = 10, P = 0.9638) with average concentration (μg/kg) of 5.028:12.83 (rural: urban). Age (maturity) had significant effect at all values of antibiotic level (F(1, 68) = 5.06, p = 0.0278). Age effect was extremely significant (F(1, 68) = 15.51, p = 0.0002).

Conclusion

A significant difference existed in drug residue proportions of β-lactam and tetracycline antimicrobials among Uganda’s rural and urban beef. A significant difference also occured in drug residue proportions of these two commonly used antimicrobials related to age (maturity), but neither breed, nor sex, of Uganda’s rural and urban beef.

]]>
<![CDATA[Incidence of deformities and variation in shape of mentum and wing of Chironomus columbiensis (Diptera, Chironomidae) as tools to assess aquatic contamination]]> https://www.researchpad.co/article/5c40f776d5eed0c4843861ef

Constantly, aquatic ecosystems are under pressure by complex mixtures of contaminants whose effects are not always easy to evaluate. Due to this, organisms are sought in which early warning signs may be detected upon the presence of potentially toxic xenobiotic substances. Thereby, the study evaluated the incidence of deformities and other morphometric variations in the mentum and wing of Chironomus columbiensis exposed to water from some of the Colombian Andes affected by mining, agriculture, and cattle raising. Populations of C. columbiensis were subjected throughout their life cycle (24 days) for two generations (F1 and F2). Five treatments were carried out in controlled laboratory conditions (water from the site without impact, site of mining mercury, mining mercury + cyanide, cattle raising, and agriculture) and the respective control (reconstituted water). Thereafter, the percentage of deformities in the mentum was calculated, and for the morphometric analysis 29 landmarks were digitized for the mentum and 12 for the wing. As a result, four types of deformities were registered in the C. columbiensis mentum, like absence of teeth, increased number of teeth, fusion and space between teeth, none of them detected in the individuals from the control. Additionally, the highest incidence of deformity in F1 occurred in the treatment of mining mercury, while for F2 this took place in the treatments of mining mercury + cyanide, cattle raising and agriculture. Differences were also found with respect to the morphometric variations of the mentum and wing of C. columbiensis among the control and the treatments with water from the creeks intervened. The treatments of mining mercury + cyanide and agriculture had the highest morphological variation in the mentum and wing of C. columbiensis. The results suggest that the anthropogenic impacts evaluated generate alterations in the oral apparatus of the larval state of C. columbiensis and in the adult state provoke alterations in the wing shape (increased width and reduced basal area). These deformities may be related to multiple stress factors, among them the xenobiotics metabolized by the organisms under conditions of environmental contamination.

]]>
<![CDATA[Rift Valley fever: An open-source transmission dynamics simulation model]]> https://www.researchpad.co/article/5c3fa566d5eed0c484ca3e15

Rift Valley fever (RVF) is one of the major viral zoonoses in Africa, affecting humans and several domestic animal species. The epidemics in eastern Africa occur in a 5-15 year cycle coinciding with abnormally high rainfall generally associated to the warm phase of the El Niño event. However, recently, evidence has been gathered of inter-epidemic transmission. An open-source, easily applicable, accessible and modifiable model was built to simulate the transmission dynamics of RVF. The model was calibrated using data collected in the Kilombero Valley in Tanzania with people and cattle as host species and Ædes mcintoshi, Æ. ægypti and two Culex species as vectors. Simulations were run over a period of 27 years using standard parameter values derived from two previous studies in this region. Our model predicts low-level transmission of RVF, which is in line with epidemiological studies in this area. Emphasis in our simulation was put on both the dynamics and composition of vector populations in three ecological zones, in order to elucidate the respective roles played by different vector species: the model output did indicate the necessity of Culex involvement and also indicated that vertical transmission in Ædes mcintoshi may be underestimated. This model, being built with open-source software and with an easy-to-use interface, can be adapted by researchers and control program managers to their specific needs by plugging in new parameters relevant to their situation and locality.

]]>
<![CDATA[Whole genome sequencing of Moraxella bovoculi reveals high genetic diversity and evidence for interspecies recombination at multiple loci]]> https://www.researchpad.co/article/5c2151b8d5eed0c4843fb90f

Moraxella bovoculi is frequently cultured from the ocular secretions and conjunctiva of cattle with Infectious Bovine Keratoconjunctivitis (IBK). Previous work has shown that single nucleotide polymorphism (SNP) diversity in this species is quite high with 81,284 SNPs identified in eight genomes representing two distinct genotypes isolated from IBK affected eyes (genotype 1) and the nasopharynx of cattle without clinical IBK signs (genotype 2), respectively. The goals of this study were to identify SNPs from a collection of geographically diverse and epidemiologically unlinked M. bovoculi strains from the eyes of IBK positive cattle (n = 183) and another from the eyes of cattle (most from a single population at a single time-point) without signs of IBK (n = 63) and to characterize the genetic diversity. Strains of both genotypes were identified from the eyes of cattle without IBK signs. Only genotype 1 strains were identified from IBK affected eyes, however, these strains were isolated before the discovery of genotype 2, and the protocol for their isolation would have preferentially selected genotype 1 M. bovoculi. The core genome comprised ~74% of the whole and contained >127,000 filtered SNPs. More than 80% of these characterize diversity within genotype 1 while 23,611 SNPs (~18%) delimit the two major genotypes. Genotype 2 strains lacked a repeats-in-toxin (RTX) putative pathogenesis factor and any of ten putative antibiotic resistance genes carried within a genomic island. Within genotype 1, prevalence of these elements was 0.85 and 0.12 respectively in strains from eyes that were IBK positive. Recombination appears to be an important source of genetic diversity for genotype 1 and undermines the utility of ribosomal-locus-based species identification. The extremely high genetic diversity in genotype 1 presents a challenge to the development of an efficacious vaccine directed against them, however, several low-diversity pilin-like genes were identified. Finally, the genotype-defining SNPs described in this study are a resource that can facilitate the development of more accurate M. bovoculi diagnostic tests.

]]>
<![CDATA[Traces of history conserved over 600 years in the geographic distribution of genetic variants of an RNA virus: Bovine viral diarrhea virus in Switzerland]]> https://www.researchpad.co/article/5c117b6dd5eed0c484699288

The first records of smallpox and rabies date back thousands of years and foot-and-mouth disease in cattle was described in the 16th century. These diseases stood out by their distinct signs, dramatic way of transmission from rabid dogs to humans, and sudden appearance in cattle herds. By contrast, infectious diseases that show variable signs and affect few individuals were identified only much later. Bovine viral diarrhea (BVD), endemic in cattle worldwide, was first described in 1946, together with the eponymous RNA virus as its cause. There is general agreement that BVD was not newly emerging at that time, but its history remains unknown. A search for associations between the nucleotide sequences of over 7,000 BVD viral strains obtained during a national campaign to eradicate BVD and features common to the hosts of these strains enabled us to trace back in time the presence of BVD in the Swiss cattle population. We found that animals of the two major traditional cattle breeds, Fleckvieh and Swiss Brown, were infected with strains of only four different subgenotypes of BVDV-1. The history of these cattle breeds and the events that determined the current distribution of the two populations are well documented. Specifically, Fleckvieh originates from the Bernese and Swiss Brown from the central Alps. The spread to their current geographic distribution was determined by historic events during a major expansion of the Swiss Confederation during the 15th and 16th centuries. The association of the two cattle populations with different BVD viral subgenotypes may have been preserved by a lack of cattle imports, trade barriers within the country, and unique virus-host interactions. The congruent traces of history in the distribution of the two cattle breeds and distinct viral subgenotypes suggests that BVD may have been endemic in Switzerland for at least 600 years.

]]>