ResearchPad - calcium-imaging https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Conservation laws by virtue of scale symmetries in neural systems]]> https://www.researchpad.co/article/elastic_article_14657 Considerations of the way in which a dynamical system changes under transformation of scale offer insight into its operational principles. Scale freeness is a paradigm that has been observed in a variety of physical and biological phenomena and describes a situation in which appropriately scaling the space and time coordinates of any evolution of the system yields another possible evolution. In the brain, scale freeness has drawn considerable attention, as it has been associated with optimal information transmission capabilities. Scale symmetry describes a special case of scale freeness, in which a system is perfectly unchanged under transformation of scale. Noether’s theorem tells us that in a system that possesses such a symmetry, an associated conservation law must also exist. Here we show that scale symmetry can be identified, and the related conserved quantities measured, in both simulations and real-world data. We achieve this by deriving a generalised equation of motion that leaves the action invariant under spatiotemporal scale transformations and using a modified version of Noether’s theorem to write the associated family of conservation laws. Our contribution allows for the first such statistical characterisation of the quantity that is conserved purely by virtue of scale symmetry.

]]>
<![CDATA[Neurons from human mesenchymal stem cells display both spontaneous and stimuli responsive activity]]> https://www.researchpad.co/article/elastic_article_14593 Mesenchymal stem cells have the ability to transdifferentiate into neurons and therefore one of the potential adult stem cell source for neuronal tissue regeneration applications and understanding neurodevelopmental processes. In many studies on human mesenchymal stem cell (hMSC) derived neurons, success in neuronal differentiation was limited to neuronal protein expressions which is not statisfactory in terms of neuronal activity. Established neuronal networks seen in culture have to be investigated in terms of synaptic signal transmission ability to develop a culture model for human neurons and further studying the mechanism of neuronal differentiation and neurological pathologies. Accordingly, in this study, we analysed the functionality of bone marrow hMSCs differentiated into neurons by a single step cytokine-based induction protocol. Neurons from both primary hMSCs and hMSC cell line displayed spontaneous activity (≥75%) as demonstrated by Ca++ imaging. Furthermore, when electrically stimulated, hMSC derived neurons (hMd-Neurons) matched the response of a typical neuron in the process of maturation. Our results reveal that a combination of neuronal inducers enhance differentiation capacity of bone marrow hMSCs into high yielding functional neurons with spontaneous activity and mature into electrophysiologically active state. Conceptually, we suggest these functional hMd-Neurons to be used as a tool for disease modelling of neuropathologies and neuronal differentiation studies.

]]>
<![CDATA[Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface]]> https://www.researchpad.co/article/5c5b52f2d5eed0c4842bd2e3

The bacterium Sporosarcina pasteurii (SP) is known for its ability to cause the phenomenon of microbially induced calcium carbonate precipitation (MICP). We explored bacterial participation in the initial stages of the MICP process at the cellular length scale under two different growth environments (a) liquid culture (b) MICP in a soft agar (0.5%) column. In the liquid culture, ex-situ imaging of the cellular environment indicated that S. pasteurii was facilitating nucleation of nanoscale crystals of calcium carbonate on bacterial cell surface and its growth via ureolysis. During the same period, the meso-scale environment (bulk medium) was found to have overgrown calcium carbonate crystals. The effect of media components (urea, CaCl2), presence of live and dead in the growth medium were explored. The agar column method allows for in-situ visualization of the phenomena, and using this platform, we found conclusive evidence of the bacterial cell surface facilitating formation of nanoscale crystals in the microenvironment. Here also the bulk environment or the meso-scale environment was found to possess overgrown calcium carbonate crystals. Extensive elemental analysis using Energy dispersive X-ray spectroscopy (EDS) and X-ray powder diffraction (XRD), confirmed that the crystals to be calcium carbonate, and two different polymorphs (calcite and vaterite) were identified. Active participation of S. pasteurii cell surface as the site of calcium carbonate precipitation has been shown using EDS elemental mapping with Scanning transmission electron microscopy (STEM) and scanning electron microscopy (SEM).

]]>
<![CDATA[A compact holographic projector module for high-resolution 3D multi-site two-photon photostimulation]]> https://www.researchpad.co/article/5c58d62cd5eed0c484031834

Patterned two-photon (2P) photolysis via holographic illumination is a powerful method to investigate neuronal function because of its capability to emulate multiple synaptic inputs in three dimensions (3D) simultaneously. However, like any optical system, holographic projectors have a finite space-bandwidth product that restricts the spatial range of patterned illumination or field-of-view (FOV) for a desired resolution. Such trade-off between holographic FOV and resolution restricts the coverage within a limited domain of the neuron’s dendritic tree to perform highly resolved patterned 2P photolysis on individual spines. Here, we integrate a holographic projector into a commercial 2P galvanometer-based 2D scanning microscope with an uncaging unit and extend the accessible holographic FOV by using the galvanometer scanning mirrors to reposition the holographic FOV arbitrarily across the imaging FOV. The projector system utilizes the microscope’s built-in imaging functions. Stimulation positions can be selected from within an acquired 3D image stack (the volume-of-interest, VOI) and the holographic projector then generates 3D illumination patterns with multiple uncaging foci. The imaging FOV of our system is 800×800 μm2 within which a holographic VOI of 70×70×70 μm3 can be chosen at arbitrary positions and also moved during experiments without moving the sample. We describe the design and alignment protocol as well as the custom software plugin that controls the 3D positioning of stimulation sites. We demonstrate the neurobiological application of the system by simultaneously uncaging glutamate at multiple spines within dendritic domains and consequently observing summation of postsynaptic potentials at the soma, eventually resulting in action potentials. At the same time, it is possible to perform two-photon Ca2+ imaging in 2D in the dendrite and thus to monitor synaptic Ca2+ entry in selected spines and also local regenerative events such as dendritic action potentials.

]]>
<![CDATA[Coronary calcium scoring with partial volume correction in anthropomorphic thorax phantom and screening chest CT images]]> https://www.researchpad.co/article/5c254568d5eed0c48442c6c5

Introduction

The amount of coronary artery calcium determined in CT scans is a well established predictor of cardiovascular events. However, high interscan variability of coronary calcium quantification may lead to incorrect cardiovascular risk assignment. Partial volume effect contributes to high interscan variability. Hence, we propose a method for coronary calcium quantification employing partial volume correction.

Methods

Two phantoms containing artificial coronary artery calcifications and 293 subject chest CT scans were used. The first and second phantom contained nine calcifications and the second phantom contained three artificial arteries with three calcifications of different volumes, shapes and densities. The first phantom was scanned five times with and without extension rings. The second phantom was scanned three times without and with simulated cardiac motion (10 and 30 mm/s). Chest CT scans were acquired without ECG-synchronization and reconstructed using sharp and soft kernels. Coronary calcifications were annotated employing the clinically used intensity value thresholding (130 HU). Thereafter, a threshold separating each calcification from its background was determined using an Expectation-Maximization algorithm. Finally, for each lesion the partial content of calcification in each voxel was determined depending on its intensity and the determined threshold.

Results

Clinical calcium scoring resulted in overestimation of calcium volume for medium and high density calcifications in the first phantom, and overestimation of calcium volume for high density and underestimation for low density calcifications in the second phantom. With induced motion these effects were further emphasized. The proposed quantification resulted in better accuracy and substantially lower over- and underestimation of calcium volume even in presence of motion. In chest CT, the agreement between calcium scores from the two reconstructions improved when proposed method was used.

Conclusion

Compared with clinical calcium scoring, proposed quantification provides a better estimate of the true calcium volume in phantoms and better agreement in calcium scores between different subject scan reconstructions.

]]>
<![CDATA[Accuracy of Calcium Scoring calculated from contrast-enhanced Coronary Computed Tomography Angiography using a dual-layer spectral CT: A comparison of Calcium Scoring from real and virtual non-contrast data]]> https://www.researchpad.co/article/5c12cf78d5eed0c4849146bb

Purpose

Modern non-invasive evaluation of Coronary Artery Disease (CAD) requires non-contrast low dose Computed Tomography (CT) imaging for determination of Calcium Scoring (CACS) and contrast-enhanced imaging for evaluation of vascular stenosis. Several methods for calculation of CACS from contrast-enhanced images have been proposed before. The main principle for that is generation of virtual non-contrast images by iodine subtraction from a contrast-enhanced spectral CT dataset. However, those techniques have some limitations: Dual-Source CT imaging can lead to increased radiation exposure, and switching of the tube voltage (rapid kVp switching) can be associated with slower rotation speed of the gantry and is thus prone to motion artefacts that are especially critical in cardiac imaging. Both techniques cannot simultaneously acquire spectral data. A novel technique to overcome these difficulties is spectral imaging with a dual-layer detector. After absorption of the lower energetic photons in the first layer, the second layer detects a hardened spectrum of the emitted radiation resulting in registration of two different energy spectra at the same time. The objective of the present investigation was to evaluate the accuracy of virtual non-contrast CACS computed from spectral data in comparison to standard non-contrast imaging.

Methods

We consecutively investigated 20 patients referred to Coronary Computed Tomography Angiography (CCTA) with suspicion of CAD using a Dual-Layer spectral CT system (IQon; Philips Healthcare, The Netherlands). CACS was calculated from both, real- and virtual non-contrast images by certified software for medical use. Correlation analyses for real- and virtual non-contrast images and agreement evaluation with Bland-Altman-Plots were performed.

Results

Mean patient age was 57.7 ± 14 years (n = 20). 13 patients (65%) were male. Inter-quartile-range of clinical CACS was 0–448, the mean was 334. Correlation of CACS from real- and virtual non-contrast images was very high (0.94); p < 0.0001. The slope was 2.3 indicating that values from virtual non-contrast images are approximately half of the results obtained from real non-contrast data. Visual analysis of Bland-Altman-Plot shows good accordance of both methods when results from virtual non-contrast data are multiplied by the slope of the logistic regression model (2.3). The acquired power of this results is 0.99.

Conclusion

Determination of Calcium Score from contrast enhanced CCTA using spectral imaging with a dual-layer detector is feasible and shows good agreement with the conventional technique when a proportionality factor is applied. The observed difference between both methods is due to an underestimation of plaque volume, and—to an even greater extend -an underestimation of plaque density with the virtual non-contrast approach. Our data suggest that radiation exposure can be reduced through omitting additional native scans for patients referred to CCTA when using a dual-layer spectral system without the usual limitations of dual energy analysis.

]]>
<![CDATA[A subset of octopaminergic neurons that promotes feeding initiation in Drosophila melanogaster]]> https://www.researchpad.co/article/5b49f0ba463d7e3adec7b982

Octopamine regulates feeding behavioral responses in Drosophila melanogaster, however the molecular and circuit mechanisms have not been fully elucidated. Here, we investigated the role of a subset of octopaminergic neurons, the OA-VPM4 cluster, in sucrose acceptance behavior. Thermogenetic activation of Gal4 lines containing OA-VPM4 promoted proboscis extension to sucrose, while optogenetic inactivation reduced extension. Anatomically, the presynaptic terminals of OA-VPM4 are in close proximity to the axons of sugar-responsive gustatory sensory neurons. Moreover, RNAi knockdown of a specific class of octopamine receptor, OAMB, selectively in sugar-sensing gustatory neurons decreased the behavioral response to sucrose. By calcium imaging experiments, we found that application of octopamine potentiates sensory responses to sucrose in satiated flies. Taken together, these findings suggest a model by which OA-VPM4 promotes feeding behavior by modulating the activity of sensory neurons.

]]>
<![CDATA[Community-based benchmarking improves spike rate inference from two-photon calcium imaging data]]> https://www.researchpad.co/article/5b0e53f2463d7e030321d2c0

In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.

]]>
<![CDATA[Non-associative Potentiation of Perisomatic Inhibition Alters the Temporal Coding of Neocortical Layer 5 Pyramidal Neurons]]> https://www.researchpad.co/article/5989da26ab0ee8fa60b80c8b

Long-term potentiation of inhibitory GABAergic transmission controls synaptic integration and action potential generation of specific neocortical neurons.

]]>
<![CDATA[Bidirectional Scaling of Astrocytic Metabotropic Glutamate Receptor Signaling following Long-Term Changes in Neuronal Firing Rates]]> https://www.researchpad.co/article/5989dae1ab0ee8fa60bbbd60

Very little is known about the ability of astrocytic receptors to exhibit plasticity as a result of changes in neuronal activity. Here we provide evidence for bidirectional scaling of astrocytic group I metabotropic glutamate receptor signaling in acute mouse hippocampal slices following long-term changes in neuronal firing rates. Plasticity of astrocytic mGluRs was measured by recording spontaneous and evoked Ca2+ elevations in both astrocytic somata and processes. An exogenous astrocytic Gq G protein-coupled receptor was resistant to scaling, suggesting that the alterations in astrocyte Ca2+ signaling result from changes in activity of the surface mGluRs rather than a change in intracellular G protein signaling molecules. These findings suggest that astrocytes actively detect shifts in neuronal firing rates and adjust their receptor signaling accordingly. This type of long-term plasticity in astrocytes resembles neuronal homeostatic plasticity and might be important to ensure an optimal or expected level of input from neurons.

]]>
<![CDATA[KCNQ Channels Show Conserved Ethanol Block and Function in Ethanol Behaviour]]> https://www.researchpad.co/article/5989d9f6ab0ee8fa60b706e4

In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ) has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC50 = 19.8 mM) being more sensitive than its mammalian ortholog (IC50 = 42.1 mM). This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

]]>
<![CDATA[An Improved Genetically Encoded Red Fluorescent Ca2+ Indicator for Detecting Optically Evoked Action Potentials]]> https://www.researchpad.co/article/5989daeeab0ee8fa60bc0588

Genetically encoded Ca2+ indicators (GECIs) are powerful tools to image activities of defined cell populations. Here, we developed an improved red fluorescent GECI, termed R-CaMP1.07, by mutagenizing R-GECO1. In HeLa cell assays, R-CaMP1.07 exhibited a 1.5–2-fold greater fluorescence response compared to R-GECO1. In hippocampal pyramidal neurons, R-CaMP1.07 detected Ca2+ transients triggered by single action potentials (APs) with a probability of 95% and a signal-to-noise ratio >7 at a frame rate of 50 Hz. The amplitudes of Ca2+ transients linearly correlated with the number of APs. The expression of R-CaMP1.07 did not significantly alter the electrophysiological properties or synaptic activity patterns. The co-expression of R-CaMP1.07 and channelrhodpsin-2 (ChR2), a photosensitive cation channel, in pyramidal neurons demonstrated that R-CaMP1.07 was applicable for the monitoring of Ca2+ transients in response to optically evoked APs, because the excitation light for R-CaMP1.07 hardly activated ChR2. These technical advancements provide a novel strategy for monitoring and manipulating neuronal activity with single cell resolution.

]]>
<![CDATA[Activation of odorant receptor in colorectal cancer cells leads to inhibition of cell proliferation and apoptosis]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbdf4

The analysis and functional characterization of ectopically expressed human olfactory receptors (ORs) is becoming increasingly important, as many ORs have been identified in several healthy and cancerous tissues. OR activation has been demonstrated to have influence on cancer cell growth and progression. Here, ORs were identified using RNA-Seq analyses and RT-PCR. We demonstrated the OR protein localization in HCT116 cells using immunocytochemistry (IHC). In order to analyze the physiological role of OR51B4, we deorphanized the receptor by the use of CRE-Luciferase assays, conducted calcium imaging experiments as well as scratch- and proliferation assays. Furthermore, western blot analyses revealed the involvement of different protein kinases in the ligand-dependent signaling pathway. Receptor knockdown via shRNA was used to analyze the involvement of OR51B4.

We identified OR51B4, which is highly expressed in the colon cancer cell line HCT116 and in native human colon cancer tissues. We deorphanized the receptor and identified Troenan as an effective ligand. Troenan stimulation of HCT116 cells has anti-proliferative, anti-migratory and pro-apoptotic effects, mediated by changes in the intracellular calcium level upon PLC activation. These effects cause changes in the phosphorylation levels of p38, mTor and Akt kinases. Knockdown of the receptor via shRNA confirmed the involvement of OR51B4.

This study emphasizes the importance of ectopically expressed ORs in the therapy for several diseases. The findings provide the basis for alternative treatments of colorectal cancer.

]]>
<![CDATA[Genetically Encoded Green Fluorescent Ca2+ Indicators with Improved Detectability for Neuronal Ca2+ Signals]]> https://www.researchpad.co/article/5989da5fab0ee8fa60b9091d

Imaging the activities of individual neurons with genetically encoded Ca2+ indicators (GECIs) is a promising method for understanding neuronal network functions. Here, we report GECIs with improved neuronal Ca2+ signal detectability, termed G-CaMP6 and G-CaMP8. Compared to a series of existing G-CaMPs, G-CaMP6 showed fairly high sensitivity and rapid kinetics, both of which are suitable properties for detecting subtle and fast neuronal activities. G-CaMP8 showed a greater signal (Fmax/Fmin = 38) than G-CaMP6 and demonstrated kinetics similar to those of G-CaMP6. Both GECIs could detect individual spikes from pyramidal neurons of cultured hippocampal slices or acute cortical slices with 100% detection rates, demonstrating their superior performance to existing GECIs. Because G-CaMP6 showed a higher sensitivity and brighter baseline fluorescence than G-CaMP8 in a cellular environment, we applied G-CaMP6 for Ca2+ imaging of dendritic spines, the putative postsynaptic sites. By expressing a G-CaMP6-actin fusion protein for the spines in hippocampal CA3 pyramidal neurons and electrically stimulating the granule cells of the dentate gyrus, which innervate CA3 pyramidal neurons, we found that sub-threshold stimulation triggered small Ca2+ responses in a limited number of spines with a low response rate in active spines, whereas supra-threshold stimulation triggered large fluorescence responses in virtually all of the spines with a 100% activity rate.

]]>
<![CDATA[The Intercellular Synchronization of Ca2+ Oscillations Evaluates Cx36-Dependent Coupling]]> https://www.researchpad.co/article/5989db08ab0ee8fa60bc9460

Connexin36 (Cx36) plays an important role in insulin secretion by controlling the intercellular synchronization of Ca2+ transients induced during stimulation. The lack of drugs acting on Cx36 channels is a major limitation in further unraveling the molecular mechanism underlying this effect. To screen for such drugs, we have developed an assay allowing for a semi-automatic, fluorimetric quantification of Ca2+ transients in large populations of MIN6 cells. Here, we show that (1) compared to control cells, MIN6 cells with reduced Cx36 expression or function showed decreased synchrony of glucose-induced Ca2+ oscillations; (2) glibenclamide, a sulphonylurea which promotes Cx36 junctions and coupling, increased the number of synchronous MIN6 cells, whereas quinine, an antimalarial drug which inhibits Cx36-dependent coupling, decreased this proportion; (3) several drugs were identified that altered the intercellular Ca2+ synchronization, cell coupling and distribution of Cx36; (4) some of them also affected insulin content. The data indicate that the intercellular synchronization of Ca2+ oscillations provides a reliable and non-invasive measurement of Cx36-dependent coupling, which is useful to identify novel drugs affecting the function of β-cells, neurons, and neuron-related cells that express Cx36.

]]>
<![CDATA[Synaptotagmin I Regulates Patterned Spontaneous Activity in the Developing Rat Retina via Calcium Binding to the C2AB Domains]]> https://www.researchpad.co/article/5989daecab0ee8fa60bbfa32

Background

In neonatal binocular animals, the developing retina displays patterned spontaneous activity termed retinal waves, which are initiated by a single class of interneurons (starburst amacrine cells, SACs) that release neurotransmitters. Although SACs are shown to regulate wave dynamics, little is known regarding how altering the proteins involved in neurotransmitter release may affect wave dynamics. Synaptotagmin (Syt) family harbors two Ca2+-binding domains (C2A and C2B) which serve as Ca2+ sensors in neurotransmitter release. However, it remains unclear whether SACs express any specific Syt isoform mediating retinal waves. Moreover, it is unknown how Ca2+ binding to C2A and C2B of Syt affects wave dynamics. Here, we investigated the expression of Syt I in the neonatal rat retina and examined the roles of C2A and C2B in regulating wave dynamics.

Methodology/Principal Findings

Immunostaining and confocal microscopy showed that Syt I was expressed in neonatal rat SACs and cholinergic synapses, consistent with its potential role as a Ca2+ sensor mediating retinal waves. By combining a horizontal electroporation strategy with the SAC-specific promoter, we specifically expressed Syt I mutants with weakened Ca2+-binding ability in C2A or C2B in SACs. Subsequent live Ca2+ imaging was used to monitor the effects of these molecular perturbations on wave-associated spontaneous Ca2+ transients. We found that targeted expression of Syt I C2A or C2B mutants in SACs significantly reduced the frequency, duration, and amplitude of wave-associated Ca2+ transients, suggesting that both C2 domains regulate wave temporal properties. In contrast, these C2 mutants had relatively minor effects on pairwise correlations over distance for wave-associated Ca2+ transients.

Conclusions/Significance

Through Ca2+ binding to C2A or C2B, the Ca2+ sensor Syt I in SACs may regulate patterned spontaneous activity to shape network activity during development. Hence, modulating the releasing machinery in presynaptic neurons (SACs) alters wave dynamics.

]]>
<![CDATA[Friends and Foes from an Ant Brain's Point of View – Neuronal Correlates of Colony Odors in a Social Insect]]> https://www.researchpad.co/article/5989da5fab0ee8fa60b90960

Background

Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like “friend” and “foe” are attributed to colony odors.

Methodology/Principal Findings

Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors.

Conclusions

Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors.

]]>
<![CDATA[Linking Neuronal Ensembles by Associative Synaptic Plasticity]]> https://www.researchpad.co/article/5989da0cab0ee8fa60b77eac

Synchronized activity in ensembles of neurons recruited by excitatory afferents is thought to contribute to the coding information in the brain. However, the mechanisms by which neuronal ensembles are generated and modified are not known. Here we show that in rat hippocampal slices associative synaptic plasticity enables ensembles of neurons to change by incorporating neurons belonging to different ensembles. Associative synaptic plasticity redistributes the composition of different ensembles recruited by distinct inputs such as to specifically increase the similarity between the ensembles. These results show that in the hippocampus, the ensemble of neurons recruited by a given afferent projection is fluid and can be rapidly and persistently modified to specifically include neurons from different ensembles. This linking of ensembles may contribute to the formation of associative memories.

]]>
<![CDATA[In Heart Failure Patients with Left Bundle Branch Block Single Lead MultiSpot Left Ventricular Pacing Does Not Improve Acute Hemodynamic Response To Conventional Biventricular Pacing. A Multicenter Prospective, Interventional, Non-Randomized Study]]> https://www.researchpad.co/article/5989d9d8ab0ee8fa60b66a51

Introduction

Recent efforts to increase CRT response by multiSPOT pacing (MSP) from multiple bipols on the same left ventricular lead are still inconclusive.

Aim

The Left Ventricular (LV) MultiSPOTpacing for CRT (iSPOT) study compared the acute hemodynamic response of MSP pacing by using 3 electrodes on a quadripolar lead compared with conventional biventricular pacing (BiV).

Methods

Patients with left bundle branch block (LBBB) underwent an acute hemodynamic study to determine the %change in LV+dP/dtmax from baseline atrial pacing compared to the following configurations: BiV pacing with the LV lead in a one of lateral veins, while pacing from the distal, mid, or proximal electrode and all 3 electrodes together (i.e. MSP). All measurements were repeated 4 times at 5 different atrioventricular delays. We also measured QRS-width and individual Q-LV durations.

Results

Protocol was completed in 24 patients, all with LBBB (QRS width 171±20 ms) and 58% ischemic aetiology. The percentage change in LV+dP/dtmax for MSP pacing was 31.0±3.3% (Mean±SE), which was not significantly superior to any BiV pacing configuration: 28.9±3.2% (LV-distal), 28.3±2.7% (LV-mid), and 29.5±3.0% (LV-prox), respectively. Correlation between LV+dP/dtmax and either QRS-width or Q-LV ratio was poor.

Conclusions

In patients with LBBB MultiSPOT LV pacing demonstrated comparable improvement in contractility to best conventional BiV pacing. Optimization of atrioventricular delay is important for the best performance for both BiV and MultiSPOT pacing configurations.

Trial Registration

ClinicalTrials.gov NTC01883141

]]>
<![CDATA[Fluorescence Lifetime Readouts of Troponin-C-Based Calcium FRET Sensors: A Quantitative Comparison of CFP and mTFP1 as Donor Fluorophores]]> https://www.researchpad.co/article/5989dad5ab0ee8fa60bb7a70

We have compared the performance of two Troponin-C-based calcium FRET sensors using fluorescence lifetime read-outs. The first sensor, TN-L15, consists of a Troponin-C fragment inserted between CFP and Citrine while the second sensor, called mTFP-TnC-Cit, was realized by replacing CFP in TN-L15 with monomeric Teal Fluorescent Protein (mTFP1). Using cytosol preparations of transiently transfected mammalian cells, we have measured the fluorescence decay profiles of these sensors at controlled concentrations of calcium using time-correlated single photon counting. These data were fitted to discrete exponential decay models using global analysis to determine the FRET efficiency, fraction of donor molecules undergoing FRET and calcium affinity of these sensors. We have also studied the decay profiles of the donor fluorescent proteins alone and determined the sensitivity of the donor lifetime to temperature and emission wavelength. Live-cell fluorescence lifetime imaging (FLIM) of HEK293T cells expressing each of these sensors was also undertaken. We confirmed that donor fluorescence of mTFP-TnC-Cit fits well to a two-component decay model, while the TN-L15 lifetime data was best fitted to a constrained four-component model, which was supported by phasor analysis of the measured lifetime data. If the constrained global fitting is employed, the TN-L15 sensor can provide a larger dynamic range of lifetime readout than the mTFP-TnC-Cit sensor but the CFP donor is significantly more sensitive to changes in temperature and emission wavelength compared to mTFP and, while the mTFP-TnC-Cit solution phase data broadly agreed with measurements in live cells, this was not the case for the TN-L15 sensor. Our titration experiment also indicates that a similar precision in determination of calcium concentration can be achieved with both FRET biosensors when fitting a single exponential donor fluorescence decay model to the fluorescence decay profiles. We therefore suggest that mTFP-based probes are more suitable for FLIM experiments than CFP-based probes.

]]>