ResearchPad - cardiac-muscle https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Ion currents, action potentials, and noradrenergic responses in rat pulmonary vein and left atrial cardiomyocytes]]> https://www.researchpad.co/article/elastic_article_7931 Effects of noradrenaline on action potential (AP) repolarisation in PV cardiomyocytes. A Representative AP recording from a PV cardiomyocyte in control solution and in the presence of 1 μM noradrenaline (NA). B Representative AP recording from another PV cardiomyocyte in control solution and in the presence of 1 μM NA showing lack of AP prolongation. C Before‐and‐after plot of APD30 in PV cardiomyocytes in control solution and after superfusion with 1 μM NA. D Noradrenaline‐induced fold‐changes in APD30 in LA and PV cardiomyocytes.

]]>
<![CDATA[Membrane stabilizer Poloxamer 188 improves yield of primary isolated rat cardiomyocytes without impairing function]]> https://www.researchpad.co/article/Nbc7f16ee-111b-498c-a299-3e01086b303d

Abstract

Intact cardiomyocytes are used to investigate cardiac contractility and evaluate the efficacy of new therapeutic compounds. Primary enzymatic isolation of adult rodent cardiomyocytes has limitations, including low cardiomyocyte survival, which is likely due to ischemic conditions and/or membrane damage. The addition of Poloxamer 188 (P188) has been used to reduce ischemia‐ and membrane‐related damage in ischemia–reperfusion and muscular dystrophy studies. P188 stabilizes membranes, reducing cell death. Cardiomyocytes were isolated from rats, under three conditions: (1) using standard isolation solutions, (2) with P188 added during cannulation (ischemic event), and (3) with P188 added during cannulation, enzymatic digestion, and trituration. Cell survival was assessed by quantifying the number of rod‐shaped versus contracted cells on the day of isolation and up to 3 days post‐isolation. Adding P188 only during cannulation yielded improved survival on the day of isolation. Little difference in survival was seen among the three conditions in the days post‐isolation. Cardiomyocyte function was assessed by measuring calcium transients and unloaded sarcomere lengths for up to 2 days post‐isolation. P188 did not consistently alter calcium handling or sarcomere shortening in the isolated cardiomyocytes. We conclude that the addition of P188 to the cannulation (e.g., wash) of the isolated heart may improve initial survival of cardiomyocytes upon primary enzymatic isolation.

]]>
<![CDATA[Non-Invasive Evaluation of Heart Function with Four-Dimensional Echocardiography]]> https://www.researchpad.co/article/5989db3bab0ee8fa60bd4e6d

Background

The aim of this study is to assess the accuracy and feasibility of left ventricular systolic function determined by four-dimensional echocardiography (4DE).

Methods

Latex balloons were sewn into the left ventricle (LV) of 20 freshly harvested pig hearts which were then passively driven by a pulsatile pump apparatus. Global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS) and left ventricular ejection fraction (LVEF) derived from 4DEand two-dimensional echocardiography (2DE)-derived LVEF were quantified at different stroke volumes (SV) 30–70 ml and correlated with sonomicrometry data.

Results

In all comparisons, GLS, GCS, GAS, 2DE-LVEF, and 4DE-LVEF demonstrated strong correlations with sonomicrometry data (r = 0.77, r = 0.89, r = 0.79, r = 0.93, r = 0.96, all P <0.001). Bland-Altman analyses showed slight overestimations of echo-derived GLS, GCS, 2DE-LVEF and 3DE-LVEF over sonomicrometry values (bias = 2.88, bias = 3.99, bias = 3.37, bias = 2.78, respectively). Furthermore, there is better agreement between GCS, 4D LVEF and sonomicrometry values compared with GLS and 2D LVEF.

Conclusion

Four-dimensional echocardiography accurately assesses LV function. GCS derived by 4DE is a potential alternative parameter to quantify LV systolic function.

]]>
<![CDATA[Cardiac Myosin Binding Protein C Phosphorylation Affects Cross-Bridge Cycle's Elementary Steps in a Site-Specific Manner]]> https://www.researchpad.co/article/5989daa6ab0ee8fa60ba7b66

Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

]]>
<![CDATA[Progressive Dystrophic Pathology in Diaphragm and Impairment of Cardiac Function in FKRP P448L Mutant Mice]]> https://www.researchpad.co/article/5989da75ab0ee8fa60b966fd

Mutations in the gene for fukutin-related protein represent a subset of muscular dystrophies known as dystroglycanopathies characterized by loss of functionally-glycosylated-alpha-dystroglycan and a wide range of dystrophic phenotypes. Mice generated by our lab containing the P448L mutation in the fukutin-related protein gene demonstrate the dystrophic phenotype similar to that of LGMD2I. Here we examined the morphology of the heart and diaphragm, focusing on pathology of diaphragm and cardiac function of the mutant mice for up to 12 months. Both diaphragm and heart lack clear expression of functionally-glycosylated-alpha-dystroglycan throughout the observed period. The diaphragm undergoes progressive deterioration in histology with increasing amount of centranucleation and inflammation. Large areas of mononuclear cell infiltration and fibrosis of up to 60% of tissue area were detected as early as 6 months of age. Despite a less severe morphology with only patches of mononuclear cell infiltration and fibrosis of ~5% by 12 months of age in the heart, cardiac function is clearly affected. High frequency ultrasound reveals a smaller heart size up to 10 months of age. There are significant increases in myocardial thickness and decrease in cardiac output through 12 months. Dysfunction in the heart represents a key marker for evaluating experimental therapies aimed at cardiac muscle.

]]>