ResearchPad - cartilage https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Odiparcil, a potential glycosaminoglycans clearance therapy in mucopolysaccharidosis VI—Evidence from <i>in vitro</i> and <i>in vivo</i> models]]> https://www.researchpad.co/article/elastic_article_14726 Mucopolysaccharidoses are a class of lysosomal storage diseases, characterized by enzymatic deficiency in the degradation of specific glycosaminoglycans (GAG). Pathological accumulation of excess GAG leads to multiple clinical symptoms with systemic character, most severely affecting bones, muscles and connective tissues. Current therapies include periodic intravenous infusion of supplementary recombinant enzyme (Enzyme Replacement Therapy–ERT) or bone marrow transplantation. However, ERT has limited efficacy due to poor penetration in some organs and tissues. Here, we investigated the potential of the β-D-xyloside derivative odiparcil as an oral GAG clearance therapy for Maroteaux–Lamy syndrome (Mucopolysaccharidosis type VI, MPS VI). In vitro, in bovine aortic endothelial cells, odiparcil stimulated the secretion of sulphated GAG into culture media, mainly of chondroitin sulphate (CS) /dermatan sulphate (DS) type. Efficacy of odiparcil in reducing intracellular GAG content was investigated in skin fibroblasts from MPS VI patients where odiparcil was shown to reduce efficiently the accumulation of intracellular CS with an EC50 in the range of 1 μM. In vivo, in wild type rats, after oral administrations, odiparcil was well distributed, achieving μM concentrations in MPS VI disease-relevant tissues and organs (bone, cartilage, heart and cornea). In MPS VI Arylsulphatase B deficient mice (Arsb-), after chronic oral administration, odiparcil consistently stimulated the urinary excretion of sulphated GAG throughout the treatment period and significantly reduced tissue GAG accumulation in liver and kidney. Furthermore, odiparcil diminished the pathological cartilage thickening observed in trachea and femoral growth plates of MPS VI mice. The therapeutic efficacy of odiparcil was similar in models of early (treatment starting in juvenile, 4 weeks old mice) or established disease (treatment starting in adult, 3 months old mice). Our data demonstrate that odiparcil effectively diverts the synthesis of cellular glycosaminoglycans into secreted soluble species and this effect can be used for reducing cellular and tissue GAG accumulation in MPS VI models. Therefore, our data reveal the potential of odiparcil as an oral GAG clearance therapy for MPS VI patients.

]]>
<![CDATA[COMBSecretomics: A pragmatic methodological framework for higher-order drug combination analysis using secretomics]]> https://www.researchpad.co/article/elastic_article_14596 Multi drug treatments are increasingly used in the clinic to combat complex and co-occurring diseases. However, most drug combination discovery efforts today are mainly focused on anticancer therapy and rarely examine the potential of using more than two drugs simultaneously. Moreover, there is currently no reported methodology for performing second- and higher-order drug combination analysis of secretomic patterns, meaning protein concentration profiles released by the cells. Here, we introduce COMBSecretomics (https://github.com/EffieChantzi/COMBSecretomics.git), the first pragmatic methodological framework designed to search exhaustively for second- and higher-order mixtures of candidate treatments that can modify, or even reverse malfunctioning secretomic patterns of human cells. This framework comes with two novel model-free combination analysis methods; a tailor-made generalization of the highest single agent principle and a data mining approach based on top-down hierarchical clustering. Quality control procedures to eliminate outliers and non-parametric statistics to quantify uncertainty in the results obtained are also included. COMBSecretomics is based on a standardized reproducible format and could be employed with any experimental platform that provides the required protein release data. Its practical use and functionality are demonstrated by means of a proof-of-principle pharmacological study related to cartilage degradation. COMBSecretomics is the first methodological framework reported to enable secretome-related second- and higher-order drug combination analysis. It could be used in drug discovery and development projects, clinical practice, as well as basic biological understanding of the largely unexplored changes in cell-cell communication that occurs due to disease and/or associated pharmacological treatment conditions.

]]>
<![CDATA[Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator]]> https://www.researchpad.co/article/elastic_article_13838 Cell-autonomous circadian clocks are transcriptional/translational feedback loops that co-ordinate almost all mammalian physiology and behaviour. Although their genetic basis is well understood, we are largely ignorant of the natural behaviour of clock proteins and how they work within these loops. This is particularly true for the essential transcriptional activator BMAL1. To address this, we created and validated a mouse carrying a fully functional knock-in allele that encodes a fluorescent fusion of BMAL1 (Venus::BMAL1). Quantitative live imaging in tissue explants and cells, including the central clock of the suprachiasmatic nucleus (SCN), revealed the circadian expression, nuclear-cytoplasmic mobility, fast kinetics and surprisingly low molecular abundance of endogenous BMAL1, providing significant quantitative insights into the intracellular mechanisms of circadian timing at single-cell resolution.

]]>
<![CDATA[Reduction of osteoarthritis severity in the temporomandibular joint of rabbits treated with chondroitin sulfate and glucosamine]]> https://www.researchpad.co/article/N10336f10-2066-4958-9182-9e228dac929f

Osteoarthritis is a degenerative disease that causes substantial changes in joint tissues, such as cartilage degeneration and subchondral bone sclerosis. Chondroitin sulfate and glucosamine are commonly used products for the symptomatic treatment of osteoarthritis. The aim of the present study was to investigate the effects of these products when used as structure-modifying drugs on the progression of osteoarthritis in the rabbit temporomandibular joint. Thirty-six New Zealand rabbits were divided into 3 groups (n = 12/group): control (no disease); osteoarthritis (disease induction); and treatment (disease induction and administration of chondroitin sulfate and glucosamine). Osteoarthritis was induced by intra-articular injection of monosodium iodoacetate. Animals were killed at 30 and 90 days after initiation of therapy. The treatment was effective in reducing disease severity, with late effects and changes in the concentration of glycosaminoglycans in the articular disc. The results indicate that chondroitin sulfate and glucosamine may have a structure-modifying effect on the tissues of rabbit temporomandibular joints altered by osteoarthritis.

]]>
<![CDATA[Cartilage Quality (dGEMRIC Index) Following Knee Joint Distraction or High Tibial Osteotomy]]> https://www.researchpad.co/article/N602cbf0a-fd7f-4051-a9e8-8eadaf896cbf

Objective

High tibial osteotomy (HTO) and knee joint distraction (KJD) are treatments to unload the osteoarthritic (OA) joint with proven success in postponing a total knee arthroplasty (TKA). While both treatments demonstrate joint repair, there is limited information about the quality of the regenerated tissue. Therefore, the change in quality of the repaired cartilaginous tissue after KJD and HTO was studied using delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC).

Design

Forty patients (20 KJD and 20 HTO), treated for medial tibiofemoral OA, were included in this study. Radiographic outcomes, clinical characteristics, and cartilage quality were evaluated at baseline, and at 1- and 2-year follow-up.

Results

Two years after KJD treatment, clear clinical improvement was observed. Moreover, a statistically significant increased medial (Δ 0.99 mm), minimal (Δ 1.04 mm), and mean (Δ 0.68 mm) radiographic joint space width (JSW) was demonstrated. Likewise, medial (Δ 1.03 mm), minimal (Δ 0.72 mm), and mean (Δ 0.46 mm) JSW were statistically significantly increased on radiographs after HTO. There was on average no statistically significant change in dGEMRIC indices over two years and no difference between treatments. Yet there seemed to be a clinically relevant, positive relation between increase in cartilage quality and patients’ experienced clinical benefit.

Conclusions

Treatment of knee OA by either HTO or KJD leads to clinical benefit, and an increase in cartilage thickness on weightbearing radiographs for over 2 years posttreatment. This cartilaginous tissue was on average not different from baseline, as determined by dGEMRIC, whereas changes in quality at the individual level correlated with clinical benefit.

]]>
<![CDATA[pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage]]> https://www.researchpad.co/article/N0686bd46-1746-4f66-8610-270f1b75b482

Transparent research in musculoskeletal imaging is fundamental to reliably investigate diseases such as knee osteoarthritis (OA), a chronic disease impairing femoral knee cartilage. To study cartilage degeneration, researchers have developed algorithms to segment femoral knee cartilage from magnetic resonance (MR) images and to measure cartilage morphology and relaxometry. The majority of these algorithms are not publicly available or require advanced programming skills to be compiled and run. However, to accelerate discoveries and findings, it is crucial to have open and reproducible workflows. We present pyKNEEr, a framework for open and reproducible research on femoral knee cartilage from MR images. pyKNEEr is written in python, uses Jupyter notebook as a user interface, and is available on GitHub with a GNU GPLv3 license. It is composed of three modules: 1) image preprocessing to standardize spatial and intensity characteristics; 2) femoral knee cartilage segmentation for intersubject, multimodal, and longitudinal acquisitions; and 3) analysis of cartilage morphology and relaxometry. Each module contains one or more Jupyter notebooks with narrative, code, visualizations, and dependencies to reproduce computational environments. pyKNEEr facilitates transparent image-based research of femoral knee cartilage because of its ease of installation and use, and its versatility for publication and sharing among researchers. Finally, due to its modular structure, pyKNEEr favors code extension and algorithm comparison. We tested our reproducible workflows with experiments that also constitute an example of transparent research with pyKNEEr, and we compared pyKNEEr performances to existing algorithms in literature review visualizations. We provide links to executed notebooks and executable environments for immediate reproducibility of our findings.

]]>
<![CDATA[Low field magnetic resonance imaging of the equine distal interphalangeal joint: Comparison between weight-bearing and non-weight-bearing conditions]]> https://www.researchpad.co/article/5c58d635d5eed0c4840318c8

This descriptive study aimed to compare the magnetic resonance appearance of the distal interphalangeal joint articular cartilage between standing weight-bearing and non-weight-bearing conditions. Ten forefeet of live horses were scanned in a standing low-field magnetic resonance system (0.27 T). After euthanasia for reasons unrelated to the study, the non-weight-bearing isolated feet were scanned in a vertical positioning reproducing limb orientation in live horses. The same acquisition settings as during the weight-bearing examination were used. Thickness and cross-sectional area of the distal interphalangeal articular cartilage and joint space were measured on tridimensional T1-weighted gradient echo high resolution frontal and sagittal images at predetermined landmarks in both conditions and were compared using a linear mixed-effects model. Frontal images were randomized and submitted to 9 blinded readers with 3 different experience levels for identification of weight-bearing versus non-weight-bearing acquisitions based on cartilage appearance. Weight-bearing limbs had significantly thinner distal interphalangeal cartilage (p = 0.0001) than non-weight-bearing limbs. This change was greater in the distal phalanx cartilage than that of the middle phalanx. Blinded readers correctly identified 83% (range 65 to 95%) of the images as weight-bearing or non-weight-bearing acquisitions, with significantly different results observed among the different readers (p < 0.001) and groups (p < 0.001). These results indicate that distal interphalangeal articular cartilage and particularly cartilage of the distal phalanx thins when weight-bearing compared to the non-weight-bearing standing postmortem conditions and suggest that cartilage abnormalities may be more difficult to identify on weight-bearing standing magnetic resonance imaging.

]]>
<![CDATA[Systems biology reveals how altered TGFβ signalling with age reduces protection against pro-inflammatory stimuli]]> https://www.researchpad.co/article/5c536b3fd5eed0c484a4846b

Osteoarthritis (OA) is a degenerative condition caused by dysregulation of multiple molecular signalling pathways. Such dysregulation results in damage to cartilage, a smooth and protective tissue that enables low friction articulation of synovial joints. Matrix metalloproteinases (MMPs), especially MMP-13, are key enzymes in the cleavage of type II collagen which is a vital component for cartilage integrity. Transforming growth factor beta (TGFβ) can protect against pro-inflammatory cytokine-mediated MMP expression. With age there is a change in the ratio of two TGFβ type I receptors (Alk1/Alk5), a shift that results in TGFβ losing its protective role in cartilage homeostasis. Instead, TGFβ promotes cartilage degradation which correlates with the spontaneous development of OA in murine models. However, the mechanism by which TGFβ protects against pro-inflammatory responses and how this changes with age has not been extensively studied. As TGFβ signalling is complex, we used systems biology to combine experimental and computational outputs to examine how the system changes with age. Experiments showed that the repressive effect of TGFβ on chondrocytes treated with a pro-inflammatory stimulus required Alk5. Computational modelling revealed two independent mechanisms were needed to explain the crosstalk between TGFβ and pro-inflammatory signalling pathways. A novel meta-analysis of microarray data from OA patient tissue was used to create a Cytoscape network representative of human OA and revealed the importance of inflammation. Combining the modelled genes with the microarray network provided a global overview into the crosstalk between the different signalling pathways involved in OA development. Our results provide further insights into the mechanisms that cause TGFβ signalling to change from a protective to a detrimental pathway in cartilage with ageing. Moreover, such a systems biology approach may enable restoration of the protective role of TGFβ as a potential therapy to prevent age-related loss of cartilage and the development of OA.

]]>
<![CDATA[Diagnostic accuracy of synovial chondromatosis of the temporomandibular joint on magnetic resonance imaging]]> https://www.researchpad.co/article/5c37b7bfd5eed0c484490b73

The purpose of this study was to evaluate the diagnostic accuracy of magnetic resonance imaging (MRI) for synovial chondromatosis (SC) of the temporomandibular joint (TMJ). In this study, 1415 patients (2109 joints) with temporomandibular joint disorders were collected between January 2012 and January 2017. All patients had a preoperative MRI examination and were treated by either arthroscopy or open surgery. On reviewing all MRI images, the number of “positive”, “suspicious”, and “negative” cases was collected afterwards, then the number of reported SC cases in operative data was recorded. The SPSS software was used to process all collected data. The kappa coefficient and ROC curve (AUC-index) with sensitivity and specificity were calculated to evaluate the consistency between MRI and arthroscopy/open surgery. Compared to 156 joints with SC detected by arthroscopy and open surgery, the results of MRI examination showed “positive” in 117 joints, and “negative” in 1938 joints. The number of “true positive”, and “true negative” cases was 95, and 1897 respectively. The AUC-index was 0.86 (0.82–0.90) with a kappa coefficient of 0.74 (P < 0.05). In conclusion, the incidence of synovial chondromatosis diagnosed on MRI was in accordance with the arthroscopic and open surgery. Therefore, being a relatively non-invasive tool, MRI could be recommended as an effective diagnostic modality for SC.

]]>
<![CDATA[Computational model for the patella onset]]> https://www.researchpad.co/article/5c1966c6d5eed0c484b52d75

The patella is a sesamoid bone embedded within the quadriceps tendon and the patellar tendon that articulates with the femur. However, how is it formed is still unknown. Therefore, here we have evaluated, computationally, how three theories explain, independently, the patella onset. The first theory was proposed recently, in 2015. This theory suggested that the patella is initially formed as a bone eminence, attached to the anterodistal surface of the femur, while the quadriceps tendon is forming. Thereafter, a joint develops between the eminence and the femur, regulated by mechanical load. We evaluated this theory by simulating the biochemical environment that surrounds the tendon development. As a result, we obtained a patella-like structure embedded within the tendon, especially for larger flexion angles. The second and third theories are the most accepted until now. They state that the patella develops within tendons in response to the mechanical environment provided by the attaching muscles. The second theory analyzed the mechanical conditions (high hydrostatic stress) that (according to previous Carter theories) lead to the differentiation from tendon to fibrocartilage, and then, to bone. The last theory was evaluated using the self-optimizing capability of biological tissue. It was considered that the development of the patella, due to tissue topological optimization of the developing quadriceps tendon, is a feasible explanation of the patella appearance. For both theories, a patella onset was obtained as a structure embedded within the tendon. This model provided information about the relationship between the flexion angle and the patella size and shape. In conclusion, the computational models used to evaluate and analyze the selected theories allow determining that the patella onset may be the result of a combination of biochemical and mechanical factors that surround the patellar tendon development.

]]>
<![CDATA[Analysis of bone osteometry, mineralization, mechanical and histomorphometrical properties of tibiotarsus in broiler chickens demonstrates a influence of dietary chickpea seeds (Cicer arietinum L.) inclusion as a primary protein source]]> https://www.researchpad.co/article/5c196697d5eed0c484b52559

This study was focused on analyzing the effects of dietary inclusion of raw chickpea seed as a replacement of soybean meal as a primary protein source on bone structure in broiler chickens. Broiler chickens (n = 160) received in their diet either soybean meal (SBM) or raw chickpea seeds (CPS) as a primary protein source throughout the whole rearing period (n = 80 in each group). On the 42th day randomly selected chickens from each group (n = 8) were slaughtered. Collected tibiotarsus were subjected to examination of the biomechanical characteristics of bone mid-diaphysis, microstructure of the growth plate and articular cartilages; the analysis of mineral content and crystallinity of mineral phase, and the measurements of thermal stability of collagen in hyaline cartilage were also carried out. The inclusion of chickpea seeds resulted in increase of bone osteometric parameters (weight, length and mid-diaphysis cross-sectional area) and mechanical endurance (yield load, ultimate load, stiffness, Young modulus). However, when loads were adjusted to bone shape (yield and ultimate stress) both groups did not differ. Mineral density determined by means of densitometric measurements did not differ between groups, however the detailed analysis revealed the differences in the macro- and microelements composition. The results of FT-IR and XRD analyses showed no effect of diet type on mineral phase crystallinity and hydroxyapatite nanocrystallites size. In trabecular bone, the increase of real bone volume (BV/TV) and number of trabeculae was observed in the CPS group. Total thickness of articular cartilage was the same in both groups, save the transitional zone, which was thicker in the SBM group. The total thickness of the growth plate cartilage was significantly increased in the CPS group. The area of the most intense presence of proteoglycans was wider in the SBM group. The structural analysis of fibrous components of bone revealed the increase of fraction of thin, immature collagen content in articular cartilage, trabeculae and compact bone in the CPS group. The dietary inclusion of CPS affected the thermal stability of collagen, as decrease of net denaturation enthalpy was observed. This study showed a beneficial effect of CPS on the skeletal development, improving the overall bone development and the microarchitecture of cancellous bone. It suggests that CPS can be a promising replacement for SBM in broilers feeding in the aspect of animal welfare related to the development of the skeletal system.

]]>
<![CDATA[Deficiency of the pattern-recognition receptor CD14 protects against joint pathology and functional decline in a murine model of osteoarthritis]]> https://www.researchpad.co/article/5c0841d4d5eed0c484fcadbf

Objective

CD14 is a monocyte/macrophage pattern-recognition receptor that modulates innate inflammatory signaling. Soluble CD14 levels in knee OA synovial fluids are associated with symptoms and progression of disease. Here we investigate the role of this receptor in development of OA using a murine joint injury model of disease.

Methods

10-week-old Male C57BL/6 (WT) and CD14-deficient (CD14-/-) mice underwent destabilization of the medial meniscus (DMM) surgery to induce OA. Joint histopathology was used to examine cartilage damage, and microCT to evaluate subchondral bone (SCB) remodeling at 6 and 19 weeks after surgery. Synovial and fat pad expression of macrophage markers (F4/80, CD11c, CD68, iNOS, CCR7, CD163 and CD206) was assessed by flow cytometry and droplet digital (dd)PCR. Changes in locomotive activity indicative of joint pain were evaluated longitudinally up to 16 weeks by automated behavioral analysis.

Results

Early cartilage damage scores 6 weeks post-DMM were similar in both strains (Mean score ±SEM WT: 4.667±1.38, CD14-/-: 4.6±0.6), but at 19 weeks were less severe in CD14-/- (6.0±0.46) than in WT mice (13.44±2.5, p = 0.0002). CD14-/- mice were protected from both age-related and post-surgical changes in SCB mineral density and trabecular thickness. In addition, CD14-/- mice were protected from decreases in climbing activity (p = 0.015 vs. WT, 8 weeks) observed after DMM. Changes in synovial/fat pad expression of CCR7, a marker of M1 macrophages, were slightly reduced post-DMM in the absence of CD14, while expression of CD68 (pan-macrophage marker) and CD163 (M2 marker) were unchanged.

Conclusion

CD14 plays an important role in progression of structural and functional features of OA in the DMM model, and may provide a new target for therapeutic development.

]]>
<![CDATA[Clinical magnetic resonance-enabled characterization of mono-iodoacetate-induced osteoarthritis in a large animal species]]> https://www.researchpad.co/article/5b6dda0d463d7e7491b405e7

Introduction

Osteoarthritis (OA) is the most common form of arthritis. Medical and surgical treatments have yet to substantially diminish the global health and economic burden of OA. Due to recent advances in clinical imaging, including magnetic resonance imaging (MRI), a correlation has been established between structural joint damage and OA-related pain and disability. Existing preclinical animal models of OA are useful tools but each suffers specific roadblocks when translating structural MRI data to humans. Intraarticular injection of mono-iodoacetate (MIA) is a reliable, well-studied method to induce OA in small animals but joint size discrepancy precludes the use of clinical grade MRI to study structural disease. The porcine knee is suited for clinical MRI and demonstrates homology with humans. We set out to establish the first large animal model of MIA-induced knee OA in swine characterized by structural MRI.

Materials and methods

Yucatan swine (n = 27) underwent ultrasound-guided injection of knees with 1.2, 4, 12, or 40 mg MIA. MRI was performed at several time points over 12 weeks (n = 54 knees) and images were assessed according to a modified clinical grading scheme. Knees were harvested and graded up to 35 weeks after injection.

Results

MIA-injected knees (n = 25) but not control knees (n = 29) developed gross degeneration. A total of n = 6,000 MRI measurements were recorded by two radiologists. MRI revealed progressive cartilage damage, bone marrow edema, erosions, and effusions in MIA-injected knees. Lesion severity and progression was influenced by time, dose, and inter-individual variability.

Conclusions

Intraarticular injection of MIA produced structural knee degradation that was reliably characterized using clinical MRI in swine. Destruction was progressive and, similar to human OA, lesion severity was heterogeneous between and within treatment groups.

]]>
<![CDATA[Differential aging of growth plate cartilage underlies differences in bone length and thus helps determine skeletal proportions]]> https://www.researchpad.co/article/5b60363a463d7e4090b7ce28

Bones at different anatomical locations vary dramatically in size. For example, human femurs are 20-fold longer than the phalanges in the fingers and toes. The mechanisms responsible for these size differences are poorly understood. Bone elongation occurs at the growth plates and advances rapidly in early life but then progressively slows due to a developmental program termed “growth plate senescence.” This developmental program includes declines in cell proliferation and hypertrophy, depletion of cells in all growth plate zones, and extensive underlying changes in the expression of growth-regulating genes. Here, we show evidence that these functional, structural, and molecular senescent changes occur earlier in the growth plates of smaller bones (metacarpals, phalanges) than in the growth plates of larger bones (femurs, tibias) and that this differential aging contributes to the disparities in bone length. We also show evidence that the molecular mechanisms that underlie the differential aging between different bones involve modulation of critical paracrine regulatory pathways, including insulin-like growth factor (Igf), bone morphogenetic protein (Bmp), and Wingless and Int-1 (Wnt) signaling. Taken together, the findings reveal that the striking disparities in the lengths of different bones, which characterize normal mammalian skeletal proportions, is achieved in part by modulating the progression of growth plate senescence.

]]>
<![CDATA[Effects of collagen matrix and bioreactor cultivation on cartilage regeneration of a full-thickness critical-size knee joint cartilage defects with subchondral bone damage in a rabbit model]]> https://www.researchpad.co/article/5b59f2e5463d7e7e115148cf

Cartilage has limited self-repair ability. The purpose of this study was to investigate the effects of different species of collagen-engineered neocartilage for the treatment of critical-size defects in the articular joint in a rabbit model. Type II and I collagen obtained from rabbits and rats was mixed to form a scaffold. The type II/I collagen scaffold was then mixed with rabbit chondrocytes to biofabricate neocartilage constructs using a rotating cell culture system [three-dimensional (3D)-bioreactor]. The rabbit chondrocytes were mixed with rabbit collagen scaffold and rat collagen scaffold to form neoRBT (neo-rabbit cartilage) and neoRAT (neo-rat cartilage) constructs, respectively. The neocartilage matrix constructs were implanted into surgically created defects in rabbit knee chondyles, and histological examinations were performed after 2 and 3 months. Cartilage-like lacunae formation surrounding the chondrocytes was noted in the cell cultures. After 3 months, both the neoRBT and neoRAT groups showed cartilage-like repair tissue covering the 5-mm circular, 4-mm-deep defects that were created in the rabbit condyle and filled with neocartilage plugs. Reparative chondrocytes were aligned as apparent clusters in both the neoRAT and neoRBT groups. Both neoRBT and neoRAT cartilage repair demonstrated integration with healthy adjacent tissue; however, more integration was obtained using the neoRAT cartilage. Our data indicate that different species of type II/I collagen matrix and 3D bioreactor cultivation can facilitate cartilage engineering in vitro for the repair of critical-size defect.

]]>
<![CDATA[Insulin-Like Growth Factor I Does Not Drive New Bone Formation in Experimental Arthritis]]> https://www.researchpad.co/article/5989db3eab0ee8fa60bd5d25

Introduction

Insulin like growth factor (IGF)-I can act on a variety of cells involved in cartilage and bone repair, yet IGF-I has not been studied extensively in the context of inflammatory arthritis. The objective of this study was to investigate whether IGF-I overexpression in the osteoblast lineage could lead to increased reparative or pathological bone formation in rheumatoid arthritis and/or spondyloarthritis respectively.

Methods

Mice overexpressing IGF-I in the osteoblast lineage (Ob-IGF-I+/-) line 324–7 were studied during collagen induced arthritis and in the DBA/1 aging model for ankylosing enthesitis. Mice were scored clinically and peripheral joints were analysed histologically for the presence of hypertrophic chondrocytes and osteocalcin positive osteoblasts.

Results

90–100% of the mice developed CIA with no differences between the Ob-IGF-I+/- and non-transgenic littermates. Histological analysis revealed similar levels of hypertrophic chondrocytes and osteocalcin positive osteoblasts in the ankle joints. In the DBA/1 aging model for ankylosing enthesitis 60% of the mice in both groups had a clinical score 1<. Severity was similar between both groups. Histological analysis revealed the presence of hypertrophic chondrocytes and osteocalcin positive osteoblasts in the toes in equal levels.

Conclusion

Overexpression of IGF-I in the osteoblast lineage does not contribute to an increase in repair of erosions or syndesmophyte formation in mouse models for destructive and remodeling arthritis.

]]>
<![CDATA[Comprehensive Genome-Wide Transcriptomic Analysis of Immature Articular Cartilage following Ischemic Osteonecrosis of the Femoral Head in Piglets]]> https://www.researchpad.co/article/5989daefab0ee8fa60bc0aef

Objective

Ischemic osteonecrosis of the femoral head (ONFH) in piglets results in an ischemic injury to the immature articular cartilage. The molecular changes in the articular cartilage in response to ONFH have not been investigated using a transcriptomic approach. The purpose of this study was to perform a genome-wide transcriptomic analysis to identify genes that are upregulated in the immature articular cartilage following ONFH.

Methods

ONFH was induced in the right femoral head of 6-week old piglets. The unoperated femoral head was used as the normal control. At 24 hours (acute ischemic-hypoxic injury), 2 weeks (avascular necrosis in the femoral head) and 4 weeks (early repair) after surgery (n = 4 piglets/time point), RNA was isolated from the articular cartilage of the femoral head. A microarray analysis was performed using Affymetrix Porcine GeneChip Array. An enrichment analysis and functional clustering of the genes upregulated due to ONFH were performed using DAVID and STRING software, respectively. The increased expression of selected genes was confirmed by a real-time qRTPCR analysis.

Results

Induction of ONFH resulted in the upregulation of 383 genes at 24 hours, 122 genes at 2 weeks and 124 genes at 4 weeks compared to the normal controls. At 24 hours, the genes involved in oxidoreductive, cell-survival, and angiogenic responses were significantly enriched among the upregulated genes. These genes were involved in HIF-1, PI3K-Akt, and MAPK signaling pathways. At 2 weeks, secretory and signaling proteins involved in angiogenic and inflammatory responses, PI3K-Akt and matrix-remodeling pathways were significantly enriched. At 4 weeks, genes that represent inflammatory cytokines and chemokine signaling pathways were significantly enriched. Several index genes (genes that are upregulated at more than one time point following ONFH and are known to be important in various biological processes) including HIF-1A, VEGFA, IL-6, IL6R, IL-8, CCL2, FGF2, TGFB2, MMP1, MMP3, ITGA5, FN and Col6A1 were upregulated in the immature articular cartilage following ONFH. A qRTPCR analysis of selected genes confirmed the upregulated expression observed in the microarray analysis.

Conclusion

Immature articular cartilage responds to ONFH by the upregulation of genes involved in hypoxic stress response, angiogenesis, matrix remodeling and inflammation. This study provides novel insights into the multi-faceted role of immature articular cartilage, with inflammation as a key component, following ONFH in piglets.

]]>
<![CDATA[Increased Adipogenesis in Cultured Embryonic Chondrocytes and in Adult Bone Marrow of Dominant Negative Erg Transgenic Mice]]> https://www.researchpad.co/article/5989daf2ab0ee8fa60bc19b6

In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg) during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

]]>
<![CDATA[Interstitial Perfusion Culture with Specific Soluble Factors Inhibits Type I Collagen Production from Human Osteoarthritic Chondrocytes in Clinical-Grade Collagen Sponges]]> https://www.researchpad.co/article/5989d9ecab0ee8fa60b6cf0c

Articular cartilage has poor healing ability and cartilage injuries often evolve to osteoarthritis. Cell-based strategies aiming to engineer cartilaginous tissue through the combination of biocompatible scaffolds and articular chondrocytes represent an alternative to standard surgical techniques. In this context, perfusion bioreactors have been introduced to enhance cellular access to oxygen and nutrients, hence overcoming the limitations of static culture and improving matrix deposition. Here, we combined an optimized cocktail of soluble factors, the BIT (BMP-2, Insulin, Thyroxin), and clinical-grade collagen sponges with a bidirectional perfusion bioreactor, namely the oscillating perfusion bioreactor (OPB), to engineer in vitro articular cartilage by human articular chondrocytes (HACs) obtained from osteoarthritic patients. After amplification, HACs were seeded and cultivated in collagen sponges either in static or dynamic conditions. Chondrocyte phenotype and the nature of the matrix synthesized by HACs were assessed using western blotting and immunohistochemistry analyses. Finally, the stability of the cartilaginous tissue produced by HACs was evaluated in vivo by subcutaneous implantation in nude mice. Our results showed that perfusion improved the distribution and quality of cartilaginous matrix deposited within the sponges, compared to static conditions. Specifically, dynamic culture in the OPB, in combination with the BIT cocktail, resulted in the homogeneous production of extracellular matrix rich in type II collagen. Remarkably, the production of type I collagen, a marker of fibrous tissues, was also inhibited, indicating that the association of the OPB with the BIT cocktail limits fibrocartilage formation, favoring the reconstruction of hyaline cartilage.

]]>
<![CDATA[Fibroblast Growth Factor-2 Primes Human Mesenchymal Stem Cells for Enhanced Chondrogenesis]]> https://www.researchpad.co/article/5989da00ab0ee8fa60b73e20

Human mesenchymal stem cells (hMSCs) are multipotent cells capable of differentiating into a variety of mature cell types, including osteoblasts, adipocytes and chondrocytes. It has previously been shown that, when expanded in medium supplemented with fibroblast growth factor-2 (FGF-2), hMSCs show enhanced chondrogenesis (CG). Previous work concluded that the enhancement of CG could be attributed to the selection of a cell subpopulation with inherent chondrogenic potential. In this study, we show that FGF-2 pretreatment actually primed hMSCs to undergo enhanced CG by increasing basal Sox9 protein levels. Our results show that Sox9 protein levels were elevated within 30 minutes of exposure to FGF-2 and progressively increased with longer exposures. Further, we show using flow cytometry that FGF-2 increased Sox9 protein levels per cell in proliferating and non-proliferating hMSCs, strongly suggesting that FGF-2 primes hMSCs for subsequent CG by regulating Sox9. Indeed, when hMSCs were exposed to FGF-2 for 2 hours and subsequently differentiated into the chondrogenic lineage using pellet culture, phosphorylated-Sox9 (pSox9) protein levels became elevated and ultimately resulted in an enhancement of CG. However, small interfering RNA (siRNA)-mediated knockdown of Sox9 during hMSC expansion was unable to negate the prochondrogenic effects of FGF-2, suggesting that the FGF-2-mediated enhancement of hMSC CG is only partly regulated through Sox9. Our findings provide new insights into the mechanism by which FGF-2 regulates predifferentiation hMSCs to undergo enhanced CG.

]]>