ResearchPad - cecum https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[<i>Salmonella</i> Typhimurium discreet-invasion of the murine gut absorptive epithelium]]> https://www.researchpad.co/article/elastic_article_14650 Bacterial pathogens can use secreted effector molecules to drive entry into host cells. Studies of the intestinal pathogen S.Tm have been central to uncover the mechanistic basis for the entry process. More than two decades of research have resulted in a detailed model for how S.Tm invades gut epithelial cells through effector triggering of large Rho-GTPase-dependent actin ruffles. However, the evidence for this model comes predominantly from studies in cultured cell lines. These experimental systems lack many of the architectural and signaling features of the intact gut epithelium. Our study surprisingly reveals that in the intact mouse gut, S.Tm invades absorptive epithelial cells through a process that does not require the Rho-GTPase-activating effectors and can proceed in the absence of the prototypical ruffling response. Instead, S.Tm exploits another effector, SipA, to sneak in through discreet entry structures close to cell–cell junctions. Our results challenge the current model for S.Tm epithelial cell entry and emphasizes the need of taking a physiological host cell context into account when studying bacterium–host cell interactions.

]]>
<![CDATA[Attenuation of postoperative adhesions using a modeled manual therapy]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0283

Postoperative adhesions are pathological attachments that develop between abdominopelvic structures following surgery. Considered unavoidable and ubiquitous, postoperative adhesions lead to bowel obstructions, infertility, pain, and reoperations. As such, they represent a substantial health care challenge. Despite over a century of research, no preventive treatment exists. We hypothesized that postoperative adhesions develop from a lack of movement of the abdominopelvic organs in the immediate postoperative period while rendered immobile by surgery and opiates, and tested whether manual therapy would prevent their development. In a modified rat cecal abrasion model, rats were allocated to receive treatment with manual therapy or not, and their resulting adhesions were quantified. We also characterized macrophage phenotype. In separate experiments we tested the safety of the treatment on a strictureplasty model, and also the efficacy of the treatment following adhesiolysis. We show that the treatment led to reduced frequency and size of cohesive adhesions, but not other types of adhesions, such as those involving intraperitoneal fatty structures. This effect was associated with a delay in the appearance of trophic macrophages. The treatment did not inhibit healing or induce undesirable complications following strictureplasty. Our results support that that maintained movements of damaged structures in the immediate postoperative period has potential to act as an effective preventive for attenuating cohesive postoperative adhesion development. Our findings lay the groundwork for further research, including mechanical and pharmacologic approaches to maintain movements during healing.

]]>
<![CDATA[Growth in Egg Yolk Enhances Salmonella Enteritidis Colonization and Virulence in a Mouse Model of Human Colitis]]> https://www.researchpad.co/article/5989db2cab0ee8fa60bd17d1

Salmonella Enteritidis (SE) is one of the most common causes of bacterial food-borne illnesses in the world. Despite the SE’s ability to colonize and infect a wide-range of host, the most common source of infection continues to be the consumption of contaminated shell eggs and egg-based products. To date, the role of the source of SE infection has not been studied as it relates to SE pathogenesis and resulting disease. Using a streptomycin-treated mouse model of human colitis, this study examined the virulence of SE grown in egg yolk and Luria Bertani (LB) broth, and mouse feces collected from mice experimentally infected with SEE1 (SEE1 passed through mice). Primary observations revealed that the mice infected with SE grown in egg yolk displayed greater illness and disease markers than those infected with SE passed through mice or grown in LB broth. Furthermore, the SE grown in egg yolk achieved higher rates of colonization in the mouse intestines and extra-intestinal organs of infected mice than the SE from LB broth or mouse feces. Our results here indicate that the source of SE infection may contribute to the overall pathogenesis of SE in a second host. These results also suggest that reservoir-pathogen dynamics may be critical for SE’s ability to establish colonization and priming for virulence potential.

]]>
<![CDATA[Whole Rye Consumption Improves Blood and Liver n-3 Fatty Acid Profile and Gut Microbiota Composition in Rats]]> https://www.researchpad.co/article/5989daeeab0ee8fa60bc0219

Background

Whole rye (WR) consumption seems to be associated with beneficial health effects. Although rye fiber and polyphenols are thought to be bioactive, the mechanisms behind the health effects of WR have yet to be fully identified. This study in rats was designed to investigate whether WR can influence the metabolism of n-3 and n-6 long-chain fatty acids (LCFA) and gut microbiota composition.

Methods

For 12 weeks, rats were fed a diet containing either 50% WR or 50% refined rye (RR). The WR diet provided more fiber (+21%) and polyphenols (+29%) than the RR diet. Fat intake was the same in both diets and particularly involved similar amounts of essential (18-carbon) n-3 and n-6 LCFAs.

Results

The WR diet significantly increased the 24-hour urinary excretion of polyphenol metabolites–including enterolactone–compared with the RR diet. The WR rats had significantly more n-3 LCFA–in particular, eicosapentanoic (EPA) and docosahexanoic (DHA) acids–in their plasma and liver. Compared with the RR diet, the WR diet brought significant changes in gut microbiota composition, with increased diversity in the feces (Shannon and Simpson indices), decreased Firmicutes/Bacteroidetes ratio and decreased proportions of uncultured Clostridiales cluster IA and Clostridium cluster IV in the feces. In contrast, no difference was found between groups with regards to cecum microbiota. The WR rats had lower concentrations of total short-chain fatty acids (SCFA) in cecum and feces (p<0.05). Finally, acetate was lower (p<0.001) in the cecum of WR rats while butyrate was lower (p<0.05) in the feces of WR rats.

Interpretation

This study shows for the first time that WR consumption results in major biological modifications–increased plasma and liver n-3 EPA and DHA levels and improved gut microbiota profile, notably with increased diversity–known to provide health benefits. Unexpectedly, WR decreased SCFA levels in both cecum and feces. More studies are needed to understand the interactions between whole rye (fiber and polyphenols) and gut microbiota and also the mechanisms of action responsible for stimulating n-3 fatty acid metabolism.

]]>
<![CDATA[A Microbiological Map of the Healthy Equine Gastrointestinal Tract]]> https://www.researchpad.co/article/5989dac7ab0ee8fa60bb2ba0

Horses are exquisitely sensitive to non-specific gastrointestinal disturbances as well as systemic and extraintestinal conditions related to gut health, yet minimal data are available regarding the composition of the microbiota present in the equine stomach, small intestine, and cecum and their relation to fecal microbiota. Moreover, there is minimal information regarding the concordance of the luminal and mucosal microbial communities throughout the equine gut. Illumina-based 16S rRNA gene amplicon sequencing of the luminal and mucosal microbiota present in seven regions of the gastrointestinal tract of nine healthy adult horses revealed a distinct compositional divide between the small and large intestines. This disparity in composition was more pronounced within the luminal contents, but was also detected within mucosal populations. Moreover, the uniformity of the gut microbiota was much higher in the cecum and colon relative to that in the stomach, jejunum and ileum, despite a significantly higher number of unique sequences detected in the colon. Collectively, the current data suggest that while colonic samples (a proxy for feces) may provide a reasonable profile of the luminal contents of the healthy equine large intestine, they are not informative with regard to the contents of the stomach or small intestine. In contrast to the distinct difference between the highly variable upper gastrointestinal tract microbiota and relatively uniform large bowel microbiota present within the lumen, these data also demonstrate a regional continuity present in mucosal microbial communities throughout the length of the equine gut.

]]>
<![CDATA[Anthocyanins in Strawberry Polyphenolic Extract Enhance the Beneficial Effects of Diets with Fructooligosaccharides in the Rat Cecal Environment]]> https://www.researchpad.co/article/5989db03ab0ee8fa60bc74bb

The administration of fructooligosaccharides (FOS) beneficially modulates gastrointestinal functions and may enhance the metabolism of polyphenols. However, different polyphenolic components in the diet may have different influences on the activities of the digestive enzymes and microbiota in the gastrointestinal tract. Therefore, a 4-week study of forty-eight male Wistar rats was conducted to investigate the physiological response of the rat cecal environment to diets without and with FOS that contained two different strawberry polyphenolic extracts, specifically EP (polyphenolic profile 60, 35, 5, and 0% ellagitannins, proanthocyanidins, flavonols, anthocyanins, respectively) and EPA (polyphenolic profile: 50, 35, 6, and 9%, respectively). When combined with FOS, both extracts beneficially enhanced the acidification of the cecal digesta (P≤0.05 vs the groups without extracts), but the dietary combination of EPA and FOS elicited the greatest reduction in putrefactive short-chain fatty acid production and the lowest fecal β-glucuronidase activity in the cecum (P≤0.05 vs group EP). Moreover, the addition of dietary FOS elevated the metabolism of the examined strawberry extracts in the cecum and thereby increased the concentrations of the metabolites in the cecal digesta and urine (P≤0.05 vs the group with cellulose). Overall, both strawberry extracts modulated the effects of FOS in the gastrointestinal tract; however, the combination with EPA extract that contained anthocyanins exhibited greater beneficial effects in the lower gut environment than the EP extract.

]]>
<![CDATA[Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcab7

Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism.

]]>
<![CDATA[Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway]]> https://www.researchpad.co/article/5c900d55d5eed0c48407e6b0

Rock ptarmigans (Lagopus muta) are gallinaceous birds inhabiting arctic and sub-arctic environments. Their diet varies by season, including plants or plant parts of high nutritional value, but also toxic plant secondary metabolites (PSMs). Little is known about the microbes driving organic matter decomposition in the cecum of ptarmigans, especially the last steps leading to methanogenesis. The cecum microbiome in wild rock ptarmigans from Arctic Norway was characterized to unveil their functional potential for PSM detoxification, methanogenesis and polysaccharides degradation. Cecal samples were collected from wild ptarmigans from Svalbard (L. m. hyperborea) and northern Norway (L. m. muta) during autumn/winter (Sept-Dec). Samples from captive Svalbard ptarmigans fed commercial pelleted feed were included to investigate the effect of diet on microbial composition and function. Abundances of methanogens and bacteria were determined by qRT-PCR, while microbial community composition and functional potential were studied using 16S rRNA gene sequencing and shotgun metagenomics. Abundances of bacteria and methanogenic Archaea were higher in wild ptarmigans compared to captive birds. The ceca of wild ptarmigans housed bacterial groups involved in PSM-degradation, and genes mediating the conversion of phenol compounds to pyruvate. Methanomassiliicoccaceae was the major archaeal family in wild ptarmigans, carrying the genes for methanogenesis from methanol. It might be related to increased methanol production from pectin degradation in wild birds due to a diet consisting of primarily fresh pectin-rich plants. Both wild and captive ptarmigans possessed a broad suite of genes for the depolymerization of hemicellulose and non-cellulosic polysaccharides (e.g. starch). In conclusion, there were no physiological and phenotypical dissimilarities in the microbiota found in the cecum of wild ptarmigans on mainland Norway and Svalbard. While substantial differences in the functional potential for PSM degradation and methanogenesis in wild and captive birds seem to be a direct consequence of their dissimilar diets.

]]>
<![CDATA[An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection]]> https://www.researchpad.co/article/5989daf0ab0ee8fa60bc0e3d

Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and –injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf-/- ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens.

]]>
<![CDATA[Rumen and Cecum Microbiomes in Reindeer (Rangifer tarandus tarandus) Are Changed in Response to a Lichen Diet and May Affect Enteric Methane Emissions]]> https://www.researchpad.co/article/5989dab4ab0ee8fa60bac65a

Reindeer (Rangifer tarandus tarandus) are large Holarctic herbivores whose heterogeneous diet has led to the development of a unique gastrointestinal microbiota, essential for the digestion of arctic flora, which may include a large proportion of lichens during winter. Lichens are rich in plant secondary metabolites, which may affect members of the gut microbial consortium, such as the methane-producing methanogenic archaea. Little is known about the effect of lichen consumption on the rumen and cecum microbiotas and how this may affect methanogenesis in reindeer. Here, we examined the effects of dietary lichens on the reindeer gut microbiota, especially methanogens. Samples from the rumen and cecum were collected from two groups of reindeer, fed either lichens (Ld: n = 4), or a standard pelleted feed (Pd: n = 3). Microbial densities (methanogens, bacteria and protozoa) were quantified using quantitative real-time PCR and methanogen and bacterial diversities were determined by 454 pyrosequencing of the 16S rRNA genes.

In general, the density of methanogens were not significantly affected (p>0.05) by the intake of lichens. Methanobrevibacter constituted the main archaeal genus (>95% of reads), with Mbr. thaueri CW as the dominant species in both groups of reindeer. Bacteria belonging to the uncharacterized Ruminococcaceae and the genus Prevotella were the dominant phylotypes in the rumen and cecum, in both diets (ranging between 16–38% total sequences). Bacteria belonging to the genus Ruminococcus (3.5% to 0.6%; p = 0.001) and uncharacterized phylotypes within the order Bacteroidales (8.4% to 1.3%; p = 0.027), were significantly decreased in the rumen of lichen-fed reindeer, but not in the cecum (p = 0.2 and p = 0.087, respectively). UniFrac-based analyses showed archaeal and bacterial libraries were significantly different between diets, in both the cecum and the rumen (vegan::Adonis: pseudo-F<0.05). Based upon previous literature, we suggest that the altered methanogen and bacterial profiles may account for expected lower methane emissions from lichen-fed reindeer.

]]>
<![CDATA[FFA2 Contribution to Gestational Glucose Tolerance Is Not Disrupted by Antibiotics]]> https://www.researchpad.co/article/5989da30ab0ee8fa60b8433e

During the insulin resistant phase of pregnancy, the mRNA expression of free fatty acid 2 receptor (Ffar2) is upregulated and as we recently reported, this receptor contributes to insulin secretion and pancreatic beta cell mass expansion in order to maintain normal glucose homeostasis during pregnancy. As impaired gestational glucose levels can affect metabolic health of offspring, we aimed to explore the role of maternal Ffar2 expression during pregnancy on the metabolic health of offspring and also the effects of antibiotics, which have been shown to disrupt gut microbiota fermentative activity (the source of the FFA2 ligands) on gestational glucose homeostasis. We found that maternal Ffar2 expression and impaired glucose tolerance during pregnancy had no effect on the growth rates, ad lib glucose and glucose tolerance in the offspring between 3 and 6 weeks of age. To disrupt short chain fatty acid production, we chronically treated WT mice and Ffar2-/- mice with broad range antibiotics and further compared their glucose tolerance prior to pregnancy and at gestational day 15, and also quantified cecum and plasma SCFAs. We found that during pregnancy antibiotic treatment reduced the levels of SCFAs in the cecum of the mice, but resulted in elevated levels of plasma SCFAs and altered concentrations of individual SCFAs. Along with these changes, gestational glucose tolerance in WT mice, but not Ffar2-/- mice improved while on antibiotics. Additional data showed that gestational glucose tolerance worsened in Ffar2-/- mice during a second pregnancy. Together, these results indicate that antibiotic treatment alone is inadequate to deplete plasma SCFA concentrations, and that modulation of gut microbiota by antibiotics does not disrupt the contribution of FFA2 to gestational glucose tolerance.

]]>
<![CDATA[Evaluation of surgical anti-adhesion products to reduce postsurgical intra-abdominal adhesion formation in a rat model]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc47e

Background

Adhesions frequently occur after abdominal surgery. Many anti-adhesion products have been used in clinic. However, the evidences are short for surgeons to reasonably choose the suitable anti-adhesion produces in clinical practice. This study provided such evidence by comparing the efficiency of five products to prevent abdominal adhesion formation in a rat model.

Methods

Fifty-six Sprague-Dawley rats were randomly divided into seven groups: sham-operation group, adhesion group, and five product groups (n = 8). The abdomens of rats were opened. The injuries were created on abdominal wall and cecum in the adhesion and product groups. The wounds on abdominal wall and cecum of rats in the adhesion group were not treated before the abdomens were closed. The wounds on abdominal wall and cecum of rats in the product groups were covered with anti-adhesion product: polylactic acid (PLA) film, Seprafilm®, medical polyethylene glycol berberine liquid (PEG), medical sodium hyaluronate gel (HA), or medical chitosan (Chitosan). Fourteen days after surgery, the adhesions were evaluated by incidence, severity, adhesion area on abdominal wall and adhesion breaking strength.

Results

The application of PLA film and Seprafilm® significantly reduced the incidence, severity, adhesion area and breaking strength of cecum-abdomen adhesion (P<0.05). HA, PEG and Chitosan failed to significantly reduce the cecum-abdomen adhesion (P>0.05). The statistical significances in the incidence and severity of abdomen-adipose adhesion between adhesion group and the product groups were not achieved. However, Seprafilm® was more effective to reduce abdomen-adipose adhesion than PLA film. Furthermore, it was found that the products tested in this study did not effectively reduce cecum-adipose adhesion. The application of PEG could result in abdomen-small intestine adhesion.

Conclusion

Based on the results of this study, the preference order of anti-adhesion products used to reduce postsurgical intra-abdominal adhesion formation is Seprafilm > PLA >> HA > Chitosan > PEG.

]]>
<![CDATA[The Impact of Lactobacillus casei on the Composition of the Cecal Microbiota and Innate Immune System Is Strain Specific]]> https://www.researchpad.co/article/5989da03ab0ee8fa60b75014

The probiotic function to impact human health is thought to be related to their ability to alter the composition of the gut microbiota and modulate the human innate immune system. The ability to function as a probiotic is believed to be strain specific. Strains of Lactobacillus casei are commonly utilized as probiotics that when consumed alter the composition of the gut microbiota and modulate the host immune response. L. casei strains are known to differ significantly in gene content. The objective of this study was to investigate seven different L. casei strains for their ability to alter the murine gut microbiota and modulate the murine immune system. C57BL/6 mice were fed L. casei strains at a dose of 108 CFU/day/mouse for seven days and sacrificed 3.5h after the last administration. The cecal content and the ileum tissue were collected for microbiota analysis and immune profiling, respectively. While 5 of the L. casei strains altered the gut microbiota in a strain specific manner, two of the strains did not alter the overall cecal microbiota composition. The observed changes cluster into three groups containing between 1 and 2 strains. Two strains that did not affect the gut microbiota composition cluster together with the control in their impact on pattern recognition receptors (PRRs) expression, suggesting that the ability to alter the cecal microbiota correlates with the ability to alter PRR expression. They also cluster together in their impact on the expression of intestinal antimicrobial peptides (AMPs). This result suggests that a relationship exists between the capability of a L. casei strains to alter the composition of the gut microbiota, PRR regulation, and AMP regulation.

]]>
<![CDATA[Survey and Experimental Infection of Enteropathogenic Escherichia coli in Common Marmosets (Callithrix jacchus)]]> https://www.researchpad.co/article/5989d9e7ab0ee8fa60b6bb54

Common marmosets (Callithrix jacchus) are frequently used for biomedical research but can be afflicted with diarrhea—a serious and potentially lethal health problem. Enteropathogenic Escherichia coli (EPEC) is thought to be the causative pathogen of hemorrhagic typhlocolitis in common marmosets, but the actual incidence of the disease and the relationship between EPEC and hematochezia are unknown. This study investigated the prevalence of EPEC infection in common marmosets and the association between EPEC and hematochezia. A total of 230 stool or rectal swab samples were collected from 230 common marmosets (98 clinically healthy, 85 diarrhea, and 47 bloody stool samples) and tested by culture-based detection and PCR amplification of VT1, VT2, LT, ST, eae, and bfp genes. Healthy animals were divided into three groups (n = 4 each for high and low concentration groups and n = 2 as negative control), and those in the experimental groups were perorally inoculated with a 2-ml of suspension of EPEC R811 strain adjusted to 5 × 108 (high concentration) and 5 × 104 (low concentration) CFU/ ml. Two animals in each group were examined 3 and 14 days post-inoculation (DPI). EPEC was detected in 10 of 98 clinically healthy samples (10.2%), 17 of 85 diarrhea samples (20%), and all 47 bloody stool samples (100%), with a significant difference detected between presence of EPEC and sample status (P < 0.01). Acute hematochezia was observed in all animals of the high-concentration group but not in other groups at 1 or 2 DPI. A histopathological examination revealed the attachment of gram-negative bacilli to epithelial apical membranes and desquamated epithelial cells in the cecum of animals in the high-concentration group at 3 DPI. These findings suggest that EPEC is a causative agent of hemorrhagic typhlocolitis in common marmosets.

]]>
<![CDATA[Finishing pigs that are divergent in feed efficiency show small differences in intestinal functionality and structure]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc311

Controversial information is available regarding the feed efficiency-related variation in intestinal size, structure and functionality in pigs. The present objective was therefore to investigate the differences in visceral organ size, intestinal morphology, mucosal enzyme activity, intestinal integrity and related gene expression in low and high RFI pigs which were reared at three different geographical locations (Austria, AT; Northern Ireland, NI; Republic of Ireland, ROI) using similar protocols. Pigs (n = 369) were ranked for their RFI between days 42 and 91 postweaning and low and high RFI pigs (n = 16 from AT, n = 24 from NI, and n = 60 from ROI) were selected. Pigs were sacrificed and sampled on ~day 110 of life. In general, RFI-related variation in intestinal size, structure and function was small. Some energy saving mechanisms and enhanced digestive and absorptive capacity were indicated in low versus high RFI pigs by shorter crypts, higher duodenal lactase and maltase activity and greater mucosal permeability (P < 0.05), but differences were mainly seen in pigs from AT and to a lesser degree in pigs from ROI. Additionally, low RFI pigs from AT had more goblet cells in duodenum but fewer in jejunum compared to high RFI pigs (P < 0.05). Together with the lower expression of TLR4 and TNFA in low versus high RFI pigs from AT and ROI (P < 0.05), these results might indicate differences in the innate immune response between low and high RFI pigs. Results demonstrated that the variation in the size of visceral organs and intestinal structure and functionality was greater between geographic location (local environmental factors) than between RFI ranks of pigs. In conclusion, present results support previous findings that the intestinal size, structure and functionality do not significantly contribute to variation in RFI of pigs.

]]>
<![CDATA[Oral Uptake of Chlamydia psittaci by Ducklings Results in Systemic Dissemination]]> https://www.researchpad.co/article/5989da34ab0ee8fa60b85862

Enteric infections caused by Chlamydia (C.) psittaci are frequent in ducks, but mostly remain subclinical under field conditions. To emulate natural infection, we investigated the pathogenic potential of a C. psittaci field strain in orally inoculated 4-day-old ducklings. Three different challenge doses were tested and seven contact animals were also mock-inoculated with buffer in each group. Over the course of ten days, the birds were monitored for clinical symptoms and chlamydial dissemination before final examination of tissues using histopathology and immunohistochemistry. While the challenge strain disseminated systemically to all internal organs, mild signs of diarrhea were confined to ducklings inoculated with the highest dose (4.3 x 108 IFU/mL, Group 1). No other clinical symptoms or histopathological lesions were seen. The chlamydial load in internal organs as measured by PCR depended on the challenge dose and was unevenly distributed, i.e. high loads in spleen, liver, and distal small and large intestinal tract (ileum, cecum and rectum) vs. ten times lower values in lungs and proximal small intestinal tract (duodenum and jejunum). Notably, the C. psittaci infection of contact birds became evident on day 10 post-infection, with bacterial loads comparable to those of experimentally-infected animals, thus suggesting rapid bird-to-bird transmission of the challenge strain.

]]>
<![CDATA[Spatial Heterogeneity of Gut Microbial Composition along the Gastrointestinal Tract in Natural Populations of House Mice]]> https://www.researchpad.co/article/5989db13ab0ee8fa60bcc848

There is a growing appreciation of the role of gut microbial communities in host biology. However, the nature of variation in microbial communities among different segments of the gastrointestinal (GI) tract is not well understood. Here, we describe microbial communities from ten different segments of the GI tract (mouth, esophagus, stomach, duodenum, ileum, proximal cecum, distal cecum, colon, rectum, and feces) in wild house mice using 16S rRNA gene amplicon sequencing. We also measured carbon and nitrogen stable isotopic ratios from hair samples of individual mice as a proxy for diet. We identified factors that may explain differences in microbial composition among gut segments, and we tested for differences among individual mice in the composition of the microbiota. Consistent with previous studies, the lower GI tract was characterized by a greater relative abundance of anaerobic bacteria and greater microbial diversity relative to the upper GI tract. The upper and lower GI tracts also differed in the relative abundances of predicted microbial gene functions, including those involved in metabolic pathways. However, when the upper and lower GI tracts were considered separately, gut microbial composition was associated with individual mice. Finally, microbial communities derived from fecal samples were similar to those derived from the lower GI tract of their respective hosts, supporting the utility of fecal sampling for studying the gut microbiota of mice. These results show that while there is substantial heterogeneity among segments of the GI tract, individual hosts play a significant role in structuring microbial communities within particular segments of the GI tract.

]]>
<![CDATA[Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdc9e8

Human rotavirus (RV) infection is a leading cause of dehydrating diarrhea in infants and young children worldwide. Since therapeutic approaches to RV gastroenteritis are limited to alleviation of dehydration with oral rehydration solutions, more direct approaches to palliate symptoms of RV gastroenteritis are required. Treatments with probiotics have been increasingly recognized as alternative safe and low cost treatments for moderate infectious diarrhea. In this study, Bifidobacterium bifidum G9-1 (BBG9-1), which has been used as an intestinal drug for several decades, was shown to have a remarkable protective effect against RV gastroenteritis in a suckling mice model. As well as prophylactic oral administration of BBG9-1 from 2 days before RV infection, therapeutic oral administration of BBG9-1 from 1 day after RV infection significantly alleviated RV-induced diarrhea. Therapeutic administration of BBG9-1 reduced various types of damage in the small intestine, such as epithelial vacuolization and villous shortening, and significantly diminished the infectious RV titer in mixtures of cecal contents and feces. It was also shown that therapeutic administration of BBG9-1 significantly increased the number of acidic mucin-positive goblet cells and the gene expression of mucosal protective factors including MUC2, MUC3, MUC4, TGFβ1 and TFF3 in the small intestine. This led to alleviation of low gut permeability shown as decreased gene expression levels of occludin, claudin-1 and villin-1 after RV infection. Furthermore, in the small intestine, therapeutic administration of BBG9-1 significantly palliated the decreased gene expression of SGLT-1, which plays an important role in water absorption. In the large intestine, administered BBG9-1 was shown to replicate to assimilate undigested nutrients, resulting in normalization of the abnormally high osmotic pressure. These results suggested that water malabsorption caused by RV infection was alleviated in mice administered BBG9-1. Thus, the present study showed that oral administration of BBG9-1 palliated diarrhea partly through protection against RV-induced lesions by inducing mucosal protective factors. Oral administration of BBG9-1 is thought to be an efficient method for management of an RV epidemic for both prophylactic and therapeutic purposes.

]]>
<![CDATA[Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdbb53

Antimicrobials are sometimes given to food animals at low doses in order to promote faster growth. However, the mechanisms by which those drugs improve performance are not fully understood. This study aimed to investigate the impact of zinc bacitracin (55g/ton), enramycin (10g/ton); halquinol® (30g/ton); virginiamycin (16,5g/ton) and avilamycin (10g/ton) on the cecal microbiota of broiler chicken, compared to a control group. Six hundred and twenty four chicks (Cobb 500) arriving to an experimental unit were randomly assigned into each treatment with four repetitions per treatment. The cecal content of 16 animals per treatment (n = 96) was used for DNA extraction and sequencing of the V4 region of the 16S rRNA gene using Illumina technology. The use of antimicrobials induced significant changes in membership but not in structure of the cecal microbiota compared to the control group, suggesting a greater impact on the less abundant species of bacteria present in that environment. Halquinol was the only drug that did not affect microbial membership. Firmicutes comprised the major bacterial phylum present in the cecum of all groups. There was no statistical difference in relative abundances of the main phyla between treated animals and the control group (all P>0.05). Treatment with enramycin was associated with decreased richness and with lower relative abundance of unclassified Firmicutes, Clostridium XI, unclassified Peptostreptococcaceae (all P<0.001) and greater abundance of Clostridium XIVb (P = 0.004) and Anaerosporobacter spp. (P = 0.015), and treatment with bacitracin with greater relative abundance of Bilophila spp. (P = 0.004). Several bacterial genera were identified as representative of usage of each drug. This study used high throughput sequencing to characterize the impact of several antimicrobials in broiler chicken under controlled conditions and add new insights to the current knowledge on how AGPs affect the cecal microbiota of chicken.

]]>
<![CDATA[Interleukin-25 Mediated Induction of Angiogenin-4 Is Interleukin-13 Dependent]]> https://www.researchpad.co/article/5989da0eab0ee8fa60b78888

The intestinal surface is directly exposed to both commensal microorganisms as well as pathogens with a single layer of epithelium separating luminal microorganisms from internal tissues. Antimicrobial peptides play a crucial role in allowing epithelial cells to contain in the lumen beneficial and pathogenic microorganisms. The commensal dependent, epithelial produced, Th2 cytokine IL-25 can induce IL-13 and potentially the antimicrobial peptide angiogenin-4. Here we show that IL-13 downstream of IL-25 is required to induce angiogenin-4. IL-25 mediated induction of angiogenin-4 is furthermore not dependent on IL-22 or IL-17.

]]>