ResearchPad - cell-binding-assay https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Differential expression of interferon-lambda receptor 1 splice variants determines the magnitude of the antiviral response induced by interferon-lambda 3 in human immune cells]]> https://www.researchpad.co/article/elastic_article_13835 Type III IFNs (IFN-λs) are antiviral cytokines that are thought to act on specific subsets of cells, especially to protect mucosal barriers. Here, we demonstrate that IFN-λ3 differentially binds multiple human immune cell subsets, indicating the specific receptor subunit, IFN-λR1, is more broadly expressed in the human immune system, compared to published mouse models. IFN-λR1 expression increased after cellular activation, and antiviral responses were inhibited by a soluble version of the receptor. The direct interaction of IFN-λs with human immune cells, and specific regulation of IFN-λR1 expression, has broad mechanistic implications in the modulation of inflammatory or anti-cancer immune responses, and future antiviral therapies.

]]>
<![CDATA[Metaproteomics reveals potential mechanisms by which dietary resistant starch supplementation attenuates chronic kidney disease progression in rats]]> https://www.researchpad.co/article/5c5b52bad5eed0c4842bcf23

Background

Resistant starch is a prebiotic metabolized by the gut bacteria. It has been shown to attenuate chronic kidney disease (CKD) progression in rats. Previous studies employed taxonomic analysis using 16S rRNA sequencing and untargeted metabolomics profiling. Here we expand these studies by metaproteomics, gaining new insight into the host-microbiome interaction.

Methods

Differences between cecum contents in CKD rats fed a diet containing resistant starch with those fed a diet containing digestible starch were examined by comparative metaproteomics analysis. Taxonomic information was obtained using unique protein sequences. Our methodology results in quantitative data covering both host and bacterial proteins.

Results

5,834 proteins were quantified, with 947 proteins originating from the host organism. Taxonomic information derived from metaproteomics data surpassed previous 16S RNA analysis, and reached species resolutions for moderately abundant taxonomic groups. In particular, the Ruminococcaceae family becomes well resolved–with butyrate producers and amylolytic species such as R. bromii clearly visible and significantly higher while fibrolytic species such as R. flavefaciens are significantly lower with resistant starch feeding. The observed changes in protein patterns are consistent with fiber-associated improvement in CKD phenotype. Several known host CKD-associated proteins and biomarkers of impaired kidney function were significantly reduced with resistant starch supplementation. Data are available via ProteomeXchange with identifier PXD008845.

Conclusions

Metaproteomics analysis of cecum contents of CKD rats with and without resistant starch supplementation reveals changes within gut microbiota at unprecedented resolution, providing both functional and taxonomic information. Proteins and organisms differentially abundant with RS supplementation point toward a shift from mucin degraders to butyrate producers.

]]>
<![CDATA[Molecular characterization of the insecticidal activity of double-stranded RNA targeting the smooth septate junction of western corn rootworm (Diabrotica virgifera virgifera)]]> https://www.researchpad.co/article/5c40f769d5eed0c4843860d9

The western corn rootworm (WCR, Diabrotica virgifera virgifera) gene, dvssj1, is a putative homolog of the Drosophila melanogaster gene, snakeskin (ssk). This gene encodes a membrane protein associated with the smooth septate junction (SSJ) which is required for the proper barrier function of the epithelial lining of insect intestines. Disruption of DVSSJ integrity by RNAi technique has been shown previously to be an effective approach for corn rootworm control, by apparent suppression of production of DVSSJ1 protein leading to growth inhibition and mortality. To understand the mechanism that leads to the death of WCR larvae by dvssj1 double-stranded RNA, we examined the molecular characteristics associated with SSJ functions during larval development. Dvssj1 dsRNA diet feeding results in dose-dependent suppression of mRNA and protein; this impairs SSJ formation and barrier function of the midgut and results in larval mortality. These findings suggest that the malfunctioning of the SSJ complex in midgut triggered by dvssj1 silencing is the principal cause of WCR death. This study also illustrates that dvssj1 is a midgut-specific gene in WCR and its functions are consistent with biological functions described for ssk.

]]>
<![CDATA[Glycosaminoglycans from Alzheimer’s disease hippocampus have altered capacities to bind and regulate growth factors activities and to bind tau]]> https://www.researchpad.co/article/5c390c03d5eed0c48491f63f

Glycosaminoglycans (GAGs), including heparan sulfates and chondroitin sulfates, are major components of the extracellular matrix. Upon interacting with heparin binding growth factors (HBGF), GAGs participate to the maintaintenance of tissue homeostasis and contribute to self-healing. Although several processes regulated by HBGF are altered in Alzheimer’s disease, it is unknown whether the brain GAG capacities to bind and regulate the function of HBGF or of other heparin binding proteins, as tau, are modified in this disease. Here, we show that total sulfated GAGs from hippocampus of Alzheimer’s disease have altered capacities to bind and potentiate the activities of growth factors including FGF-2, VEGF, and BDNF while their capacity to bind to tau is remarkable increased. Alterations of GAG structures and capacities to interact with and regulate the activity of heparin binding proteins might contribute to impaired tissue homeostasis in the Alzheimer’s disease brain.

]]>
<![CDATA[DENR–MCTS1 heterodimerization and tRNA recruitment are required for translation reinitiation]]> https://www.researchpad.co/article/5b28baa9463d7e1564977085

The succession of molecular events leading to eukaryotic translation reinitiation—whereby ribosomes terminate translation of a short open reading frame (ORF), resume scanning, and then translate a second ORF on the same mRNA—is not well understood. Density-regulated reinitiation and release factor (DENR) and multiple copies in T-cell lymphoma-1 (MCTS1) are implicated in promoting translation reinitiation both in vitro in translation extracts and in vivo. We present here the crystal structure of MCTS1 bound to a fragment of DENR. Based on this structure, we identify and experimentally validate that DENR residues Glu42, Tyr43, and Tyr46 are important for MCTS1 binding and that MCTS1 residue Phe104 is important for tRNA binding. Mutation of these residues reveals that DENR-MCTS1 dimerization and tRNA binding are both necessary for DENR and MCTS1 to promote translation reinitiation in human cells. These findings thereby link individual residues of DENR and MCTS1 to specific molecular functions of the complex. Since DENR–MCTS1 can bind tRNA in the absence of the ribosome, this suggests the DENR–MCTS1 complex could recruit tRNA to the ribosome during reinitiation analogously to the eukaryotic initiation factor 2 (eIF2) complex in cap-dependent translation.

]]>
<![CDATA[Identification of a Small Molecule Inhibitor of RAD52 by Structure-Based Selection]]> https://www.researchpad.co/article/5989db0eab0ee8fa60bcb240

It has been reported that inhibition of RAD52 either by specific shRNA or a small peptide aptamer induced synthetic lethality in tumor cell lines carrying BRCA1 and BRCA2 inactivating mutations. Molecular docking was used to screen two chemical libraries: 1) 1,217 FDA approved drugs, and 2) 139,735 drug-like compounds to identify candidates for interacting with DNA binding domain of human RAD52. Thirty six lead candidate compounds were identified that were predicted to interfere with RAD52 –DNA binding. Further biological testing confirmed that 9 of 36 candidate compounds were able to inhibit the binding of RAD52 to single-stranded DNA in vitro. Based on molecular binding combined with functional assays, we propose a model in which the active compounds bind to a critical “hotspot” in RAD52 DNA binding domain 1. In addition, one of the 9 active compounds, adenosine 5’-monophosphate (A5MP), and also its mimic 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) 5’ phosphate (ZMP) inhibited RAD52 activity in vivo and exerted synthetic lethality against BRCA1 and BRCA2–mutated carcinomas. These data suggest that active, inhibitory RAD52 binding compounds could be further refined for efficacy and safety to develop drugs inducing synthetic lethality in tumors displaying deficiencies in BRCA1/2-mediated homologous recombination.

]]>
<![CDATA[LANA-Mediated Recruitment of Host Polycomb Repressive Complexes onto the KSHV Genome during De Novo Infection]]> https://www.researchpad.co/article/5989da89ab0ee8fa60b9d3ed

One of the hallmarks of the latent phase of Kaposi’s sarcoma-associated herpesvirus (KSHV) infection is the global repression of lytic viral gene expression. Following de novo KSHV infection, the establishment of latency involves the chromatinization of the incoming viral genomes and recruitment of the host Polycomb repressive complexes (PRC1 and PRC2) to the promoters of lytic genes, which is accompanied by the inhibition of lytic genes. However, the mechanism of how PRCs are recruited to the KSHV episome is still unknown. Utilizing a genetic screen of latent genes in the context of KSHV genome, we identified the latency-associated nuclear antigen (LANA) to be responsible for the genome-wide recruitment of PRCs onto the lytic promoters following infection. We found that LANA initially bound to the KSHV genome right after infection and subsequently recruited PRCs onto the viral lytic promoters, thereby repressing lytic gene expression. Furthermore, both the DNA and chromatin binding activities of LANA were required for the binding of LANA to the KSHV promoters, which was necessary for the recruitment of PRC2 to the lytic promoters during de novo KSHV infection. Consequently, the LANA-knockout KSHV could not recruit PRCs to its viral genome upon de novo infection, resulting in aberrant lytic gene expression and dysregulation of expression of host genes involved in cell cycle and proliferation pathways. In this report, we demonstrate that KSHV LANA recruits host PRCs onto the lytic promoters to suppress lytic gene expression following de novo infection.

]]>
<![CDATA[Mechanism of Collaborative Enhancement of Binding of Paired Antibodies to Distinct Epitopes of Platelet Endothelial Cell Adhesion Molecule-1]]> https://www.researchpad.co/article/5989d9feab0ee8fa60b73029

Monoclonal antibodies (mAbs) directed to extracellular epitopes of human and mouse Platelet Endothelial Cell Adhesion Molecule-1 (CD31 or PECAM-1) stimulate binding of other mAbs to distinct adjacent PECAM-1 epitopes. This effect, dubbed Collaborative Enhancement of Paired Affinity Ligands, or CEPAL, has been shown to enhance delivery of mAb-targeted drugs and nanoparticles to the vascular endothelium. Here we report new insights into the mechanism underlying this effect, which demonstrates equivalent amplitude in the following models: i) cells expressing a full length PECAM-1 and mutant form of PECAM-1 unable to form homodimers; ii) isolated fractions of cellular membranes; and, iii) immobilized recombinant PECAM-1. These results indicate that CEPAL is mediated not by interference in cellular functions or homophilic PECAM-1 interactions, but rather by conformational changes within the cell adhesion molecule induced by ligand binding. This mechanism, mediated by exposure of partially occult epitopes, is likely to occur in molecules other than PECAM-1 and may represent a generalizable phenomenon with valuable practical applications.

]]>
<![CDATA[Inhibition of STAT3 by Anticancer Drug Bendamustine]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdba7f

Bendamustine (BENDA), which bears the bis(2-chloroethyl)amino moiety, is an alkylating agent that stops the growth of cancer cells by binding to DNA and interfering with its replication. However, the mechanism of action underlying its excellent clinical efficacy remains unclear. In this work, we report that BENDA inhibits signal transducer and activator of transcription 3 (STAT3). In an AlphaScreen-based biochemical assay using recombinant human STAT3, binding of STAT3–Src homology 2 (SH2) to the phosphotyrosine (pTyr, pY) peptide was inhibited by BENDA but not by the inactive metabolite dihydroxy bendamustine (HP2). When a single point mutation of C550A or C712A was introduced into recombinant human STAT3, its sensitivity to BENDA was substantially reduced, suggesting that these cysteine residues are important for BENDA to inhibit STAT3. Furthermore, BENDA suppressed the function of cellular STAT3 as a transcriptional activator in a human breast cancer cell line, MDA-MB-468, with constitutively activated STAT3. A competitive pull-down assay using biotinylated BENDA (Bio-BENDA) revealed that BENDA bound tightly to cellular STAT3, presumably through covalent bonds. Therefore, our results suggest that the anticancer effects of BENDA may be associated, at least in part, with its inhibitory effect on the SH2 domain of STAT3.

]]>
<![CDATA[Restored mutant receptor:Corticoid binding in chaperone complexes by trimethylamine N-oxide]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbf7d

Without a glucocorticoid (GC) ligand, the transcription factor glucocorticoid receptor (GR) is largely cytoplasmic, with its GC-binding domain held in high affinity conformation by a cluster of chaperones. Binding a GC causes serial dis- and re-associations with chaperones, translocation of the GR to the nucleus, where it binds to DNA sites and associates with coregulatory proteins and basic transcription complexes. Herein, we describe the effects of a potent protective osmolyte, trimethylamine N-oxide (TMAO), on a conditions-dependent “activation-labile” mutant GR (GRact/l), which under GR-activating conditions cannot bind GCs in cells or in cell cytosols. In both cells and cytosols, TMAO restores binding to GRact/l by stabilizing it in complex with chaperones. Cells bathed in much lower concentrations of TMAO than those required in vitro show restoration of GC binding, presumably due to intracellular molecular crowding effects.

]]>
<![CDATA[Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbe42

The RNA-binding protein La is overexpressed in a number of tumor tissues and is thought to support tumorigenesis by binding to and facilitating the expression of mRNAs encoding tumor-promoting and anti-apoptotic factors. Hence, small molecules able to block the binding of La to specific RNAs could have a therapeutic impact by reducing the expression of tumor-promoting and anti-apoptotic factors. Toward this novel therapeutic strategy, we aimed to develop a high-throughput fluorescence polarization assay to screen small compound libraries for molecules blocking the binding of La to an RNA element derived from cyclin D1 mRNA. Herein, we make use of a robust fluorescence polarization assay and the validation of primary hits by electrophoretic mobility shift assays. We showed recently that La protects cells against cisplatin treatment by stimulating the protein synthesis of the anti-apoptotic factor Bcl2. Here, we show by RNA immunoprecipitation experiments that one small compound specifically impairs the association of La with Bcl2 mRNA in cells and sensitizes cells for cipslatin-induced cell death. In summary, we report the application of a high-throughput fluorescence polarization assay to identify small compounds that impair the binding of La to target RNAs in vitro and in cells.

]]>
<![CDATA[Hepatitis C virus Broadly Neutralizing Monoclonal Antibodies Isolated 25 Years after Spontaneous Clearance]]> https://www.researchpad.co/article/5989dad0ab0ee8fa60bb5ccc

Hepatitis C virus (HCV) is world-wide a major cause of liver related morbidity and mortality. No vaccine is available to prevent HCV infection. To design an effective vaccine, understanding immunity against HCV is necessary. The memory B cell repertoire was characterized from an intravenous drug user who spontaneously cleared HCV infection 25 years ago. CD27+IgG+ memory B cells were immortalized using BCL6 and Bcl-xL. These immortalized B cells were used to study antibody-mediated immunity against the HCV E1E2 glycoproteins. Five E1E2 broadly reactive antibodies were isolated: 3 antibodies showed potent neutralization of genotype 1 to 4 using HCV pseudotyped particles, whereas the other 2 antibodies neutralized genotype 1, 2 and 3 or 1 and 2 only. All antibodies recognized non-linear epitopes on E2. Finally, except for antibody AT12-011, which recognized an epitope consisting of antigenic domain C /AR2 and AR5, all other four antibodies recognized epitope II and domain B. These data show that a subject, who spontaneously cleared HCV infection 25 years ago, still has circulating memory B cells that are able to secrete broadly neutralizing antibodies. Presence of such memory B cells strengthens the argument for undertaking the development of an HCV vaccine.

]]>
<![CDATA[Cel5I, a SLH-Containing Glycoside Hydrolase: Characterization and Investigation on Its Role in Ruminiclostridium cellulolyticum]]> https://www.researchpad.co/article/5989da44ab0ee8fa60b8af7d

Ruminiclostridium cellulolyticum (Clostridium cellulolyticum) is a mesophilic cellulolytic anaerobic bacterium that produces a multi-enzymatic system composed of cellulosomes and non-cellulosomal enzymes to degrade plant cell wall polysaccharides. We characterized one of the non-cellulosomal enzymes, Cel5I, composed of a Family-5 Glycoside Hydrolase catalytic module (GH5), a tandem of Family-17 and -28 Carbohydrate Binding Modules (CBM), and three S-layer homologous (SLH) modules, where the latter are expected to anchor the protein on the cell surface. Cel5I is the only putative endoglucanase targeting the cell surface as well as the only putative protein in R. cellulolyticum containing CBM17 and/or CBM28 modules. We characterized different recombinant structural variants from Cel5I. We showed that Cel5I has an affinity for insoluble cellulosic substrates through its CBMs, that it is the most active endoglucanase on crystalline cellulose of R. cellulolyticum characterized to date and mostly localized in the cell envelope of R. cellulolyticum. Its role in vivo was analyzed using a R. cellulolyticum cel5I mutant strain. Absence of Cel5I in the cell envelope did not lead to a significant variation of the phenotype compared to the wild type strain. Neither in terms of cell binding to cellulose, nor for its growth on crystalline cellulose, thus indicating that the protein has a rather subtle role in tested conditions. Cel5I might be more important in a natural environment, at low concentration of degradable glucose polymers, where its role might be to generate higher concentration of short cellodextrins close to the cell surface, facilitating their uptake or for signalization purpose.

]]>
<![CDATA[Elimination of Pseudomonas aeruginosa through Efferocytosis upon Binding to Apoptotic Cells]]> https://www.researchpad.co/article/5989d9f6ab0ee8fa60b701e7

For opportunistic pathogens such as Pseudomonas aeruginosa, the mucosal barrier represents a formidable challenge. Infections develop only in patients with altered epithelial barriers. Here, we showed that P. aeruginosa interacts with a polarized epithelium, adhering almost exclusively at sites of multi-cellular junctions. In these sites, numerous bacteria attach to an extruded apoptotic cell or apoptotic body. This dead cell tropism is independent of the type of cell death, as P. aeruginosa also binds to necrotic cells. We further showed that P. aeruginosa is internalized through efferocytosis, a process in which surrounding epithelial cells engulf and dispose of extruded apoptotic cells. Intracellularly, along with apoptotic cell debris, P. aeruginosa inhabits an efferocytic phagosome that acquires lysosomal features, and is finally killed. We propose that elimination of P. aeruginosa through efferocytosis is part of a host defense mechanism. Our findings could be relevant for the study of cystic fibrosis, which is characterized by an exacerbated number of apoptotic cells and ineffective efferocytosis.

]]>
<![CDATA[Inhibition of prenylated KRAS in a lipid environment]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc1e6

RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.

]]>
<![CDATA[ssDNA Aptamer Specifically Targets and Selectively Delivers Cytotoxic Drug Doxorubicin to HepG2 Cells]]> https://www.researchpad.co/article/5989da6cab0ee8fa60b9356e

Hepatocellular carcinoma (HCC) is the third leading cause of death due to cancer worldwide with over 500,000 people affected annually. Although chemotherapy has been widely used to treat patients with HCC, alternate modalities to specifically deliver therapeutic cargos to cancer cells have been sought in recent years due to the severe side effects of chemotherapy. In this respect, aptamer-based tumor targeted drug delivery has emerged as a promising approach to increase the efficacy of chemotherapy and reduce or eliminate drug toxicity. In this study, we developed a new HepG2-specific aptamer (HCA#3) by a procedure known as systematic evolution of ligands by exponential enrichment (SELEX) and exploited its role as a targeting ligand to deliver doxorubicin (Dox) to HepG2 cells in vitro. The selected 76-base nucleotide aptamer preferentially bound to HepG2 hepatocellular carcinoma cells but not to control cells. The aptamer HCA#3 was modified with paired CG repeats at the 5′-end to carry and deliver a high payload of intercalated Dox molecules at the CG sites. Four Dox molecules (mol/mol) were fully intercalated in each conjugate aptamer-Dox (ApDC) molecule. Biostability analysis showed that the ApDC molecules are stable in serum. Functional analysis showed that ApDC specifically targeted and released Dox within HepG2 cells but not in control cells, and treatment with HCA#3 ApDC induced HepG2 cell apoptosis but had minimal effect on control cells. Our study demonstrated that HCA#3 ApDC is a promising aptamer-targeted therapeutic that can specifically deliver and release a high doxorubicin payload in HCC cells.

]]>
<![CDATA[Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy]]> https://www.researchpad.co/article/5989da7eab0ee8fa60b99c0e

Background

Left atrial enlargement in mitral regurgitation (MR) predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown.

Methods and Results

This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD), and 6 purchased samples from normal subjects (NC). We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that “NFAT in cardiac hypertrophy” pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated) through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1) were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC.

Conclusions

Differentially expressed genes in the “NFAT in cardiac hypertrophy” pathway may play a critical role in the atrial myocyte hypertrophy of MR patients.

]]>
<![CDATA[Strain-Transcending Inhibitory Antibodies against Homologous and Heterologous Strains of Duffy Binding Protein region II]]> https://www.researchpad.co/article/5989da4aab0ee8fa60b8c96a

Duffy binding protein region II (DBPII) is a promising vaccine candidate against vivax malaria. However, polymorphisms of DBPII are the major obstacle to designing a successful vaccine. Here, we examined whether anti-DBPII antibodies from individual P. vivax exposures provide strain-transcending immunity and whether their presence is associated with DBPII haplotypes found in patients with acute P. vivax. The ability of antibodies to inhibit DBL-TH-erythrocyte binding was tested by COS7 erythrocyte binding inhibition assay. Seven samples of high responders (HR) were identified from screening anti-DBPII levels. HR no.3 and HR no.6 highly inhibited all DBL-TH binding to erythrocytes, by >80%. Antibodies from these two patients’ plasma had the potential to be broadly inhibitory against DBL-TH1, -TH2, -TH6, -TH7, -TH8 and -TH9 haplotypes when plasma was serially diluted from 1:500 to 1:2000. To further examine the association of DBPII haplotypes and the ability of antibodies to broadly inhibit DBL-TH variants, the individual samples underwent sequencing analysis and the inhibitory function of the anti-DBPII antibodies was tested. The patterns of DBPII polymorphisms in acute patients were classified into two groups, DBPII Sal I (55%) and DBL-TH variants (45%). Plasma from Sal I and DBPII-TH patients who had the highest inhibition against Sal I or DBL-TH4 and -TH5 was serially diluted from 1:500 to 1:2000 and their inhibitory capacity was tested against a panel of DBL-TH haplotypes. Results provided evidence of both strain-transcending inhibition as well as strain-specific inhibition by antibodies that blocked erythrocyte binding against some DBL-TH variants and against homologous alleles. This study demonstrated broad inhibition by anti-DBPII antibodies against DBL-TH haplotypes in natural P. vivax exposed individuals. The identification of conserved epitopes among DBL-TH may have implications for vaccine development of a DBPII-based vaccine against diverse P. vivax infections.

]]>
<![CDATA[C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells]]> https://www.researchpad.co/article/5989da09ab0ee8fa60b7703c

The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 – ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species.

]]>
<![CDATA[Synthetic Site-Selectively Mono-6-O-Sulfated Heparan Sulfate Dodecasaccharide Shows Anti-Angiogenic Properties In Vitro and Sensitizes Tumors to Cisplatin In Vivo]]> https://www.researchpad.co/article/5989dacdab0ee8fa60bb4bea

Heparan sulphate (HS), a ubiquitously expressed glycosaminoglycan (GAG), regulates multiple cellular functions by mediating interactions between numerous growth factors and their cell surface cognate receptors. However, the structural specificity of HS in these interactions remains largely undefined. Here, we used completely synthetic, structurally defined, alternating N-sulfated glucosamine (NS) and 2-O-sulfated iduronate (IS) residues to generate dodecasaccharides ([NSIS]6) that contained no, one or six glucosamine 6-O-sulfates (6S). The aim was to address how 6S contributes to the potential of defined HS dodecasaccharides to inhibit the angiogenic growth factors FGF2 and VEGF165, in vitro and in vivo. We show that the addition of a single 6S at the non-reducing end of [NSIS]6, i.e. [NSIS6S]-[NSIS]5, significantly augments the inhibition of FGF2-dependent endothelial cell proliferation, migration and sprouting in vitro when compared to the non-6S variant. In contrast, the fully 6-O-sulfated dodecasaccharide, [NSIS6S]6, is not a potent inhibitor of FGF2. Addition of a single 6S did not significantly improve inhibitory properties of [NSIS]6 when tested against VEGF165-dependent endothelial cell functions.In vivo, [NSIS6S]-[NSIS]5 blocked FGF2-dependent blood vessel formation without affecting tumor growth. Reduction of non-FGF2-dependent ovarian tumor growth occurred when [NSIS6S]-[NSIS]5 was combined with cisplatin. The degree of inhibition by [NSIS6S]-[NSIS]5 in combination with cisplatin in vivo equated with that induced by bevacizumab and sunitinib when administered with cisplatin. Evaluation of post-treatment vasculature revealed that [NSIS6S]-[NSIS]5 treatment had the greatest impact on tumor blood vessel size and lumen formation. Our data for the first time demonstrate that synthetic, structurally defined oligosaccharides have potential to be developed as active anti-angiogenic agents that sensitize tumors to chemotherapeutic agents.

]]>