ResearchPad - cell-cycle-growth-proliferation https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[MicroRNA-92a-3p enhances functional recovery and suppresses apoptosis after spinal cord injury via targeting phosphatase and tensin homolog]]> https://www.researchpad.co/article/elastic_article_9232 Spinal cord injury (SCI) is a neurological disease commonly caused by traumatic events on spinal cords. MiRNA-92a-3p is reported to be down-regulated after SCI. Our study investigated the effects of up-regulated miR-92a-3p on SCI and the underlying mechanisms. SCI mice model was established to evaluate the functional recovery of hindlimbs of mice through open-field locomotion and scored by Basso, Beattie, and Bresnahan (BBB) locomotion scale. Apoptosis of spinal cord cells was determined by flow cytometry. The effects of miR-92a-3p on SCI were detected by intrathecally injecting miR-92a-3p agomiR (agomiR-92) into the mice prior to the establishment of SCI. Phosphatase and tensin homolog (PTEN) was predicted as a target of miR-29a-3p by TargetScan. We further assessed the effects of agomiR-92 or/and overexpressed PTEN on apoptosis rates and apoptotic protein expressions in SCI mice. Moreover, the activation of protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling was determined by Western blot. The results showed that compared with the sham-operated mice, SCI mice had much lower BBB scores, and theapoptosis rate of spinal cord cells was significantly increased. After SCI, the expression of miR-92a-3p was down-regulated, and increased expression of miR-92a-3p induced by agomiR-92 further significantly increased the BBB score and decreased apoptosis. PTEN was specifically targeted by miR-92a-3p. In addition, the phosphorylation levels of Akt and mTOR were up-regulated under the treatment of agomiR-92. Our data demonstrated that the neuroprotective effects of miR-92a-3p on spinal cord safter SCI were highly associated with the activation of the PTEN/AKT/mTOR pathway.

]]>
<![CDATA[MiR-139-5p influences hepatocellular carcinoma cell invasion and proliferation capacities via decreasing SLITRK4 expression]]> https://www.researchpad.co/article/elastic_article_9224 The microRNA, miR-139-5p, has been proved to play important roles in regulating tumor progression, including prostate cancer, osteosarcoma, esophageal cancer, and so on, but its correlation of hepatocellular carcinoma (HCC) still remains unclear. Here we found that hsa-miR-139-5p (miR-139-5p) was decreased in HCC samples compared with normal liver tissues, and a lower expression of miR-139-5p was connected to a poorer prognosis. Mechanism study indicated that a decreased/increased miR-139-5p could increase/decrease HCC cells invasion and proliferation capacities via increasing SLITRK4 expression, what’s more, the reverse assays also confirmed the conclusion when we knocked down SLITRK4 in the miR-139-5p low-expression cells. Luciferase assay confirmed that miR-139-5p could directly bind to the 3′UTR of SLITRK4 mRNA to regulate its expression. Together, these findings show the importance of miR-139-5p/SLITRK4 pathway in HCC growth and progression and may provide new targets for us to better arrange the progression of HCC.

]]>
<![CDATA[MiR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3]]> https://www.researchpad.co/article/Nf6861224-ba65-498a-8aad-78abbb68558a Objective: Diabetic nephropathy (DN) is one of the most severe and frequent diabetic complications. MicroRNAs (miRNAs) have been reported to play a vital role in DN pathogenesis. The present study aimed to investigate the molecular mechanism of miR-770-5p in DN.

Methods: Podocyte injury model was established by treating mouse podocytes with high glucose (HG, 33 mM) for 24 h. The levels of miR-770-5p and TIMP3 were examined in kidney tissues and podocytes using quantitative real-time PCR (qRT-PCR). Flow cytometry analysis was applied to detect apoptosis in podocytes. Western blot assay was used to measure the protein levels of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax) and tissue inhibitors of metalloproteinase 3 (TIMP3). Enzyme-linked immunosorbent assay (ELISA) was conducted to measure the levels of inflammatory factors. The interaction between miR-770-5p and TIMP3 was determined by MicroT-CDS and luciferase reporter assay.

Results: MiR-770-5p was up-regulated and TIMP3 was down-regulated in DN kidney tissues and HG-stimulated podocytes. Depletion of miR-770-5p suppressed cell apoptosis and the release of pro-inflammatory factors in HG-treated podocytes. Additionally, TIMP3 was a target of miR-770-5p in HG-treated podocytes. TIMP3 inhibited cell apoptosis and inflammation in HG-treated podocytes. Moreover, TIMP3 knockdown alleviated the inhibitory effect of miR-770-5p silencing on podocyte apoptosis and inflammatory response.

Conclusion: Knockdown of miR-770-5p suppressed podocyte apoptosis and inflammatory response by targeting TIMP3 in HG-treated podocytes, indicating that miR-770-5p may be a potential therapeutic target for DN therapy.

]]>
<![CDATA[Tripartite motif containing 35 contributes to the proliferation, migration, and invasion of lung cancer cells <i>in vitro</i> and <i>in vivo</i>]]> https://www.researchpad.co/article/Nf9f428bd-7fc2-4f06-9f50-5d826c45a0ed The tripartite motif (TRIM) family is a family of proteins with highly conserved domains. Previous researches have suggested that the members of TRIM family proteins played a crucial role in cancer development and progression. Our study explored the relationship between TRIM35 and non-small cell lung cancer (NSCLC). The study showed that the expression of TRIM35 was increased in NSCLC samples, and patients with high expression of TRIM35 had a poor clinical prognosis. Overexpression of TRIM35 in NSCLC cell line H460 promoted cell proliferation, migration, and invasion, knockdown of TRIM35 produced an opposite result in A549 and H1299 cell lines. In vivo study further confirmed that overexpression of TRIM35 promoted tumor formation. The RNA-seq analysis suggested that TRIM35 might promote lung cancer proliferation, migration, and invasion by regulating cancer-associated functions and signaling pathways. Hence, we identified TRIM35 played a significant role in tumoral growth and was a potential diagnosis and prognosis target for lung cancer.

]]>
<![CDATA[Astragalus polysaccharides inhibit ovarian cancer cell growth via microRNA-27a/FBXW7 signaling pathway]]> https://www.researchpad.co/article/Nfae9b3af-a7e3-439c-b7ce-fb37e070c1f0

Abstract

Astragalus polysaccharide (APS), a natural antioxidant found in Astragalus membranaceus emerging as a novel anticancer agent, exerts antiproliferative and pro-apoptotic activity in various cancer cell types, but its effect on ovarian cancer (OC) remains unknown. In the present study, we tried to elucidate the role and mechanism of APS in OC cells. Our results showed that APS treatment suppressed the proliferation and induced apoptosis in OC cells. Afterward, the microRNA (miRNA) profiles in APS-treated cells were determined by a microarray assay, and whether APS affected OV-90 cells through regulation of miRNA was determined. Among these aberrant miRNAs, miR-27a was selected for further study as its oncogenic roles in various human cancers. Moreover, we found overexpression of miR-27a reversed the antiproliferation and pro-apoptotic effects of APS on OC cells. F-box and WD-40 domain protein 7 (FBXW7), a classical tumor suppressor, was found directly targeted by miR-27a and its translation was suppressed by miR-27a in OC cells. Finally, it was also observed that knockdown of FBXW7 by si-FBXW7 reversed the tumor suppressive activity of APS in OC cells, which is similar to the effects of miR-27a overexpression. Our findings demonstrate that APS can suppress OC cell growth in vitro via miR-27a/FBXW7 axis, and this observation reveals the therapeutic potential of APS for treatment of OC.

]]>
<![CDATA[Involvement of p53-dependent apoptosis signal in antitumor effect of Colchicine on human papilloma virus (HPV)-positive human cervical cancer cells]]> https://www.researchpad.co/article/Nf252f75d-f123-460d-be01-4a92f19e6b11

Abstract

Colchicine, a plant-derived alkaloid with relatively low toxicity on normal human epidermal keratinocytes (HEKn), has selective inhibitory effect on the growth of CaSki (HPV16-positive) and HeLa (HPV18-positive) human cervical cancer cell lines via the induction of apoptosis. Colchicine (2.5, 5.0 and 10.0 ng/ml) significantly reduced the expression of human papilloma virus (HPV) 16 E6/E7 mRNA and protein in CaSki and HeLa cells. Moreover, reduced expression of E6 and E7 induced by Colchicine resulted in the up-regulation of tumor suppressor proteins, p53 and Rb, as well as down-regulation of phospho Rb (pRb) protein. In addition, Bax, cytosolic cytochrome c and cleaved caspase-3 protein were increased while Bcl-2 protein was decreased significantly by 48 h of Colchicine treatment. These results implied that Colchicine could be explored as a potent candidate agent for the treatment and prevention of HPV-associated cervical cancer without deleterious effects.

]]>
<![CDATA[The role of DOT1L in the proliferation and prognosis of gastric cancer]]> https://www.researchpad.co/article/N8c571c50-4065-4605-8595-5d9cb38319b2

Abstract

Background: Disruptor of telomeric silencing-1-like (DOT1L), a methyltransferase of H3K79, was observed to be amplified and overexpressed in certain malignancies. This work was aimed at investigating the differences in DOT1L expression and its regulatory mechanism in gastric cancer (GC) and healthy samples.

Methods: Immunohistochemistry was used to detect DOT1L levels in 101 cases of GC and marching adjacent normal tissues. DOT1L was inhibited by small interfering RNA (siRNA) and EPZ5676; a targeting drug. The ability of cells to proliferate were checked by cell counting kit-8 (CCK-8) and clone formation assays, with flow cytometry for observing the cell cycle. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot revealed the gene and protein profiles. Finally, the outcome of EPZ5676 administration was checked on a murine model.

Results: The expression of DOT1L is significantly increased in gastric malignant tumors that is related to the degree of differentiation, lymph node metastasis and TNM staging. DOT1L serves as an independent marker for the prognosis of overall survival (OS) with high levels implying worse prognosis. In addition, DOT1L regulates cyclin-dependent kinase (CDK) 4 (CDK4) and CDK6 through H3K79me2, which leads to a change in the cell cycle at G1, thereby affecting the proliferation of tumors in vitro and in vivo.

Conclusions: This is a first clinical demonstration of the applicability of DOT1L overexpression in gastric tumors. The work is suggestive of altered proliferation of cells by DOT1L via regulating cyclins and H3K79 methylation. This indicates the role of DOT1L in the prognosis and possible medical intervention of GC.

]]>
<![CDATA[FOXM1/LINC00152 feedback loop regulates proliferation and apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via Wnt/β-catenin signaling pathway]]> https://www.researchpad.co/article/N34585059-04b4-459f-97e5-8478547c69ac

Abstract

Rheumatoid arthritis (RA), a chronic systemic disease, is featured with inflammatory synovitis, which can lead to destruction on bone and cartilage and even cause disability. Emerging studies demonstrated that Fibroblast-like synoviocytes (FLS) is a vital cellular participant in RA progression. Long non-coding RNAs (lncRNAs) are also reported to participate in the pathogenesis of RA. In our present study, lncRNA microarray analysis was applied to screen out lncRNAs differentially expressed in RA FLS. Among which, cytoskeleton regulator RNA (LINC00152) presented biggest fold change. Gain- or loss-of function assays were further carried out in RA FLS, and the results revealed that LINC00152 promoted proliferation but induced apoptosis in RA FLS. Furthermore, up-regulation of LINC00152 may induce promotion of Wnt/β-catenin signaling pathway in RA FLS. Mechanistically, we found that forkhead box M1 (FOXM1) transcriptionally activated LINC00152 in RA FLS. Additionally, LINC00152 positively regulated FOXM1 via sponging miR-1270. In conclusion, the present study focused on elucidating the function of FOXM1/LINC00152 positive feedback loop in RA FLS and its association with Wnt/β-catenin signaling.

]]>
<![CDATA[Foam cells promote atherosclerosis progression by releasing CXCL12]]> https://www.researchpad.co/article/N84a17081-cf78-4be7-a264-5554dcf1a076

Abstract

Background: Atherosclerosis (AS) is a chronic inflammatory disease that contributes to multiple cardiovascular diseases (CVDs), and foam cell formation plays important roles in the progression of AS. There is an urgent need to identify new molecular targets for treating AS, and thereby improve the quality of life and reduce the financial burden of individuals with CVD.

Methods: An in vitro model of AS was generated by treating THP-1 cells and human aortic vascular smooth muscle cells (HA-VSMCs) with oxidized low-density lipoproteins (ox-LDLs). HA-VSMC proliferation and foam cell formation were detected by the MTT assay and Oil Red O staining. C–X–C motif chemokine 12 (CXCL12) expression was suppressed by siRNA. An AS rat model was established by feeding rats a high-fat diet and vitamin D2 for 3 weeks. Histopathology examinations were conducted by Hematoxylin and Eosin (H&E) staining and the levels ionized calcium-binding adapter molecule 1 (IBA1) and α smooth muscle actin (α-SMA) expression were determined by ELISA assays and immunohistochemistry.

Results: An in vitro model of AS was established with THP-1 cells. CXCL12 expression in the model THP-1 cells was significantly increased when compared with its expression in control cells. Suppression of CXCL12 expression reduced the progression of AS in the cell model. Moreover, CXCL12 promoted AS in the in vivo rat model.

Conclusion: Our results suggest that CXCL12 plays an important role in promoting the progression of AS. Furthermore, inhibition of CXCL12 might suppress the development of AS by inhibiting HA-VSMC proliferation and their transformation to foam cells.

]]>
<![CDATA[The novel testicular enrichment protein Cfap58 is required for Notch-associated ciliogenesis]]> https://www.researchpad.co/article/Ne723610e-b7d7-4bdb-a948-b4eaede2002a

Abstract

Cilia and flagella are critical organelles with conserved internal structures and diverse developmental and physiological processes according to cell type. Although the core components of structures are shared with thousands of associated proteins involved in cilia or flagella formation, we hypothesized that some unknown proteins, such as outer dense fiber 2 (Odf2/Cenexin) perform distinct functions in these organelles. In the present study, we identified several uncharacterized proteins through mass spectrometry interactome analysis of Odf2/Cenexin proteins. We further examined the expression patterns and functions of a protein named cilia and flagella associated protein 58 (Cfap58) in cultured astrocytes and sperm flagella. The results of a combination of biochemical analyses and drug administration studies reveal that Cfap58 is a testis-enrichment protein that exhibits similar localization to Odf2/Cenexin proteins and is required for the elongation of the primary cilium and sperm midpiece via modulation of the Notch signaling pathway. However, the cell cycle-related functions and localization of Odf2/Cenexin in the mother centriole were not altered in Cfap58 knockdown cells. These findings indicate that Cfap58 may be partially recruited by Odf2/Cenexin proteins and is indispensable for the cilia and flagellar assembly. These data provide us with a better understanding of ciliogenesis and flagellar elongation and may aid in identifying new targets for diseases caused by Notch-mediated ciliopathies and flagellar abnormalities.

]]>
<![CDATA[17β-estradiol binding to ERα promotes the progression of prolactinoma through estrogen-response element-induced CaBP-9k up-regulation]]> https://www.researchpad.co/article/Nf3b910c9-00eb-4731-a4a3-ff69fbff4f89

Abstract

17β-estradiol (E2) is considered to be an important instigator of prolactinoma, and can positively regulate the expression of calbindin-D9k (CaBP-9k) which contains an estrogen responsive element (ERE) via estrogen receptors (ERs). However, the detailed mechanism of E2 in promoting CaBP-9k expression and their roles in prolactinoma progression remain unclear. Here, we aimed to characterize it. The luciferase gene reporter assay with luc-ERE transfection showed that E2 treatment significantly enhanced the transcriptional level of CaBP-9k, whereas CaBP-9k activity was reduced when GH3 and MMQ cells were treated with AZD9496, an antagonist of ERα. E2 treatment increased the protein expressions of CaBP-9k and ERα but not ERβ, whereas this effect was also abolished when cells were treated with AZD9496. Besides, immunoprecipitation (IP) and immunofluorescence assays demonstrated that CaBP-9k could directly interact with ERα not ERβ, and Chromatin IP (ChIP) assay showed that ERα could bind to ERE of the CaBP-9k promoter. Moreover, cell counting kit-8 (CCK-8) and flow cytometry assays showed that E2 treatment significantly enhanced cell viability and inhibited cell apoptosis, but these effects were all abolished when ERα was down-regulated by short hairpin RNA (shRNA) or inhibited by AZD9496, as well as CaBP-9K suppression in both GH3 and MMQ cell lines. Taken together, these findings indicated that E2 stimulation promoted prolactin cell proliferation and inhibited cell apoptosis through ERα-induced CaBP-9k up-regulation, which then accelerated the advanced progression of prolactinoma.

]]>
<![CDATA[MicroRNA-101-3p inhibits fibroblast-like synoviocyte proliferation and inflammation in rheumatoid arthritis by targeting PTGS2]]> https://www.researchpad.co/article/Na3f85068-b71b-4bf6-a3eb-1fed7648749b

Abstract

Objective: Rheumatoid arthritis (RA) is the most frequently occurring inflammatory arthritis. The present study was performed to characterize the role of microRNA-101-3p (miR-101-3p) and prostaglandin-endoperoxide synthase 2 (PTGS2) in inflammation and biological activities of fibroblast-like synoviocytes (FLSs) in RA.

Methods: Initially, miR-101-3p and PTGS2 expression in RA tissues of RA patients and RA rats was detected by qRT-PCR and Western blot analysis. Rat model of type II collagen-induced arthritis (CIA) was adopted to simulate RA, followed by injection of miR-101-3p mimics or siRNA against PTGS2. Next, the apoptosis in synovial tissue and the levels of tumor necrosis factor (TNF)-α, IL-1β and IL-6 were identified. Subsequently, FLSs in RA (RA-FLSs) were isolated, after which in vitro experiments were conducted to analyze cell proliferation, apoptosis, migration and invasion upon treatment of up-regulated miR-101-3p and silenced PTGS2. Furthermore, the relationship of miR-101-3p and PTGS2 was determined by bioinformatics prediction and luciferase activity assay.

Results: We identified poorly expressed miR-101-3p and highly expressed PTGS2 in synovial tissues of RA patients and RA rats, which showed reduced synoviocyte apoptosis and enhanced inflammation. In response to miR-101-3p mimics and si-PTGS2, the RA-FLSs were observed with attenuated cell proliferation, migration and invasion, corresponding to promoted apoptosis. Down-regulation of PTGS2 could rescue the effect of inhibited miR-101-3p in synovial injury and phenotypic changes of FLS in RA rats. Notably, miR-101-3p was found to negatively regulate PTGS2.

Conclusion: Taken together, miR-101-3p reduces the joint swelling and arthritis index in RA rats by down-regulating PTGS2, as evidenced by inhibited FLS proliferation and inflammation.

]]>
<![CDATA[Exopolysaccharides isolated from Rhizopus nigricans induced colon cancer cell apoptosis in vitro and in vivo via activating the AMPK pathway]]> https://www.researchpad.co/article/N3fa3fdb8-6b5f-46db-8215-9bd9ff004fb6

Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related human deaths. The exopolysaccharide (EPS1-1), isolated from Rhizopus nigricans, has been described as exhibiting anti-tumor and pro-apoptotic activity against CRC, although the underlying mechanism is poorly understood. Herein, we investigate how EPS1-1 induces apoptosis of CRC cells in vitro and in vivo. Our results show that, in vitro, EPS1-1 suppressed cell growth and facilitated apoptosis in a dose- and time-dependent manner by activating the AMP-activated protein kinase (AMPK) pathway in mouse colon cancer CT26 cells. However, treatment with small interfering RNAs (siRNAs) targeting AMPKα or with compound C, an AMPK inhibitor, interfered with the pro-apoptosis effects of EPS1-1. We also show that EPS1-1 initiated the release of reactive oxygen species (ROS) and liver kinase B1 (LKB1), both of which are necessary signals for AMPK activation. Furthermore, EPS1-1-mediated apoptosis is regulated by inactivation of mammalian target of rapamycin complex 1 (mTORC1) and activation of the jun-NH2 kinase (JNK)-p53 signaling axis dependent on AMPK activation. In vivo, azoxymethane/dextran sulfate sodium (AOM/DSS)-treated CRC mice, when administered EPS1-1, exhibited activation of the AMPK pathway, inhibition of mTORC1, and accumulation of p53 in tumor tissues. Collectively, these findings suggest that EPS1-1-induced apoptosis relies on the activation of the AMPK pathway. The present study provides evidence suggesting that EPS1-1 may be an effective target for development of novel CRC therapeutic agents.

]]>
<![CDATA[miR-365 inhibits duck myoblast proliferation by targeting IGF-I via PI3K/Akt pathway]]> https://www.researchpad.co/article/Nc8ddffde-609e-4cec-a50b-c75584334452

Abstract

miR-365 is found to be involved in cancer cell proliferation and apoptosis. However, it remains unknown if and how miR-365 plays a role in myoblast proliferation. In the present study, we found that overexpression of miR-365 can inhibit duck myoblast proliferation. To uncover the mechanism by which miR-365 inhibits duck myoblast proliferation, we showed that miR-365 can down-regulate insulin-like growth factor-I (IGF-I) by directly targeting its 3′untranslated region (UTR). Moreover, enhanced miR-365 decreased the mRNA expression of PI3K, Akt, mTOR and S6K. Importantly, the enhanced PI3K, Akt, mTOR and S6K expression by miR-365 inhibitor (anti-miR-365) was abrogated by treatment with LY294002, a PI3K inhibitor. Together, our results indicated that miR-365 may target IGF-I to inhibit duck myoblast proliferation via PI3K/Akt pathway.

]]>
<![CDATA[BCYRN1 is correlated with progression and prognosis in gastric cancer]]> https://www.researchpad.co/article/N283072aa-97c8-46ba-955a-6fa3edfad2f3

Abstract

Long non-coding RNA brain cytoplasmic RNA 1 (BCYRN1) has been found to play an important role in tumorigenesis of a variety of tumors including gastric cancer (GC). However, the prognostic significance and molecular mechanism of BCYRN1 was still unknown in GC. In the present study, we found BCYRN1 expression was dramatically elevated in GC tissues and cell lines, and positively associated with tumor depth, lymph node metastasis and clinical stage in patients with GC. Moreover, univariate and multivariate Cox regression analyses demonstrated that high BCYRN1 expression was independent prognostic factor for overall survival in GC patients. In lncRNA-microRNA interactome database, we found that there were putative binding sites between BCYRN1 and miR-204-5p. Furthermore, we confirmed that down-regulation of BCYRN1 inhibited GC cell proliferation, migration and invasion through directly up-regulated miR-204-5p expression. In conclusion, BCYRN1 acts as a promising prognostic predictor in GC patients and regulated GC cell proliferation, cell cycle, migration and invasion through targeting miR-204-5p.

]]>