ResearchPad - cerebral-blood-flow-assay https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Direct comparison of activation maps during galvanic vestibular stimulation: A hybrid H<sub>2</sub>[<sup>15</sup> O] PET—BOLD MRI activation study]]> https://www.researchpad.co/article/elastic_article_14749 Previous unimodal PET and fMRI studies in humans revealed a reproducible vestibular brain activation pattern, but with variations in its weighting and expansiveness. Hybrid studies minimizing methodological variations at baseline conditions are rare and still lacking for task-based designs. Thus, we applied for the first time hybrid 3T PET-MRI scanning (Siemens mMR) in healthy volunteers using galvanic vestibular stimulation (GVS) in healthy volunteers in order to directly compare H215O-PET and BOLD MRI responses. List mode PET acquisition started with the injection of 750 MBq H215O simultaneously to MRI EPI sequences. Group-level statistical parametric maps were generated for GVS vs. rest contrasts of PET, MR-onset (event-related), and MR-block. All contrasts showed a similar bilateral vestibular activation pattern with remarkable proximity of activation foci. Both BOLD contrasts gave more bilateral wide-spread activation clusters than PET; no area showed contradictory signal responses. PET still confirmed the right-hemispheric lateralization of the vestibular system, whereas BOLD-onset revealed only a tendency. The reciprocal inhibitory visual-vestibular interaction concept was confirmed by PET signal decreases in primary and secondary visual cortices, and BOLD-block decreases in secondary visual areas. In conclusion, MRI activation maps contained a mixture of CBF measured using H215O-PET and additional non-CBF effects, and the activation-deactivation pattern of the BOLD-block appears to be more similar to the H215O-PET than the BOLD-onset.

]]>
<![CDATA[A novel visual ranking system based on arterial spin labeling perfusion imaging for evaluating perfusion disturbance in patients with ischemic stroke]]> https://www.researchpad.co/article/N32085c18-73a0-407b-8668-9d011597efb2

We developed a visual ranking system by combining the parenchymal perfusion deficits (PPD) and hyperintense vessel signals (HVS) on arterial spin labeling (ASL) imaging. This study aimed to assess the performance of this ranking system by correlating with subtypes classified based on dynamic susceptibility contrast (DSC) imaging for evaluating the perfusion disturbance observed in patients with ischemic stroke. 32 patients with acute or subacute infarcts detected by DSC imaging were reviewed. Each patient’s brain was divided into 12 areas. ASL ranks were defined by the presence (+) or absence (-) of PPD/HVS as follows; I:–/–, II:–/+, III: +/+, and IV: +/–. DSC imaging findings were categorized based on cerebral blood flow (CBF) and time to peak (TTP) as normal (normal CBF/TTP), mismatched (normal CBF/delayed TTP), and matched (decreased CBF/delayed TTP). Two reviewers rated perfusion abnormalities in the total of 384 areas. The four ASL ranks correlated well with the DSC subtypes (Spearman’s r = 0.82). The performance of ASL ranking system was excellent as indicated by the area under the curve value of 0.94 using either matched or mismatched DSC subtype as the gold standard and 0.97 using only the matched DSC subtype as the gold standard. The two methods were in good-to-excellent agreement (maximum κ-values, 0.86). Inter-observer agreement was excellent (κ-value, 0.98). Although the number of patients was small and the number of dropouts was high, our proposed, ASL-based visual ranking system represented by PPD and HVS provides good, graded estimates of perfusion disturbance that agree well with those obtained by DSC perfusion imaging.

]]>
<![CDATA[Frequency-resolved analysis of coherent oscillations of local cerebral blood volume, measured with near-infrared spectroscopy, and systemic arterial pressure in healthy human subjects]]> https://www.researchpad.co/article/5c6c75b8d5eed0c4843d006b

We report a study on twenty-two healthy human subjects of the dynamic relationship between cerebral hemoglobin concentration ([HbT]), measured with near-infrared spectroscopy (NIRS) in the prefrontal cortex, and systemic arterial blood pressure (ABP), measured with finger plethysmography. [HbT] is a measure of local cerebral blood volume (CBV). We induced hemodynamic oscillations at discrete frequencies in the range 0.04–0.20 Hz with cyclic inflation and deflation of pneumatic cuffs wrapped around the subject’s thighs. We modeled the transfer function of ABP and [HbT] in terms of effective arterial (K(a)) and venous (K(v)) compliances, and a cerebral autoregulation time constant (τ(AR)). The mean values (± standard errors) of these parameters across the twenty-two subjects were K(a) = 0.01 ± 0.01 μM/mmHg, K(v) = 0.09 ± 0.05 μM/mmHg, and τ(AR) = 2.2 ± 1.3 s. Spatially resolved measurements in a subset of eight subjects reveal a spatial variability of these parameters that may exceed the inter-subject variability at a set location. This study sheds some light onto the role that ABP and cerebral blood flow (CBF) play in the dynamics of [HbT] measured with NIRS, and paves the way for new non-invasive optical studies of cerebral blood flow and cerebral autoregulation.

]]>
<![CDATA[Poincaré plot analysis of cerebral blood flow signals: Feature extraction and classification methods for apnea detection]]> https://www.researchpad.co/article/5c141ee1d5eed0c484d28a77

Objective

Rheoencephalography is a simple and inexpensive technique for cerebral blood flow assessment, however, it is not used in clinical practice since its correlation to clinical conditions has not yet been extensively proved. The present study investigates the ability of Poincaré Plot descriptors from rheoencephalography signals to detect apneas in volunteers.

Methods

A group of 16 subjects participated in the study. Rheoencephalography data from baseline and apnea periods were recorded and Poincaré Plot descriptors were extracted from the reconstructed attractors with different time lags (τ). Among the set of extracted features, those presenting significant differences between baseline and apnea recordings were used as inputs to four different classifiers to optimize the apnea detection.

Results

Three features showed significant differences between apnea and baseline signals: the Poincaré Plot ratio (SDratio), its correlation (R) and the Complex Correlation Measure (CCM). Those differences were optimized for time lags smaller than those recommended in previous works for other biomedical signals, all of them being lower than the threshold established by the position of the inflection point in the CCM curves. The classifier showing the best performance was the classification tree, with 81% accuracy and an area under the curve of the receiver operating characteristic of 0.927. This performance was obtained using a single input parameter, either SDratio or R.

Conclusions

Poincaré Plot features extracted from the attractors of rheoencephalographic signals were able to track cerebral blood flow changes provoked by breath holding. Even though further validation with independent datasets is needed, those results suggest that nonlinear analysis of rheoencephalography might be a useful approach to assess the correlation of cerebral impedance with clinical changes.

]]>
<![CDATA[Cerebral blood flow variability in fibromyalgia syndrome: Relationships with emotional, clinical and functional variables]]> https://www.researchpad.co/article/5c0e9898d5eed0c484eaae27

Objective

This study analyzed variability in cerebral blood flow velocity (CBFV) and its association with emotional, clinical and functional variables and medication use in fibromyalgia syndrome (FMS).

Methods

Using transcranial Doppler sonography, CBFV were bilaterally recorded in the anterior (ACA) and middle (MCA) cerebral arteries of 44 FMS patients and 31 healthy individuals during a 5-min resting period. Participants also completed questionnaires assessing pain, fatigue, insomnia, anxiety, depression and health-related quality of life (HRQoL).

Results

Fast Fourier transformation revealed a spectral profile with four components: (1) a first very low frequency (VLF) component with the highest amplitude at 0.0024 Hz; (2) a second VLF component around 0.01-to-0.025 Hz; (3) a low frequency (LF) component from 0.075-to-0.11 Hz; and (4) a high frequency (HF) component with the lowest amplitude from 0.25-to-0.35 Hz. Compared to controls, FMS patients exhibited lower LF and HF CBFV variability in the MCAs (p < .005) and right ACA (p = .03), but higher variability at the first right MCA (p = .04) and left ACA (p = .005) VLF components. Emotional, clinical and functional variables were inversely related to LF and HF CBFV variability (r≥-.24, p≤.05). However, associations for the first VLF component were positive (r≥.28, p≤.05). While patients´ medication use was associated with lower CBFV variability, comorbid depression and anxiety disorders were unrelated to variability.

Conclusions

Lower CBFV variability in the LF and HF ranges were observed in FMS, suggesting impaired coordination of cerebral regulatory systems. CBFV variability was differentially associated with clinical variables as a function of time-scale, with short-term variability being related to better clinical outcomes. CBFV variability analysis may be a promising tool to characterize FMS pathology and it impact on facets of HRQoL.

]]>
<![CDATA[Mapping Long-Term Functional Changes in Cerebral Blood Flow by Arterial Spin Labeling]]> https://www.researchpad.co/article/5989da9dab0ee8fa60ba473c

Although arterial spin labeling (ASL) is appealing for mapping long-term changes in functional activity, inter-sessional variations in basal blood flow, arterial transit times (ATTs), and alignment errors, can result in significant false activation when comparing images from separate sessions. By taking steps to reduce these sources of noise, this study assessed the ability of ASL to detect functional CBF changes between sessions. ASL data were collected in three sessions to image ATT, resting CBF and CBF changes associated with motor activation (7 participants). Activation maps were generated using rest and task images acquired in the same session and from sessions separated by up to a month. Good agreement was found when comparing between-session activation maps to within-session activation maps with only a 16% decrease in precision (within-session: 90 ± 7%) and a 13% decrease in the Dice similarity (within-session: 0.75 ± 0.07) coefficient after a month. In addition, voxel-wise reproducibility (within-session: 4.7 ± 4.5%) and reliability (within-session: 0.89 ± 0.20) of resting grey-matter CBF decreased by less than 18% for the between-session analysis relative to within-session values. ATT variability between sessions (5.0 ± 2.7%) was roughly half the between-subject variability, indicating that its effects on longitudinal CBF were minimal. These results demonstrate that conducting voxel-wise analysis on CBF images acquired on different days is feasible with only modest loss in precision, highlighting the potential of ASL for longitudinal studies.

]]>
<![CDATA[Cerebral Autoregulation Real-Time Monitoring]]> https://www.researchpad.co/article/5989da3fab0ee8fa60b89792

Cerebral autoregulation is a mechanism which maintains constant cerebral blood flow (CBF) despite changes in mean arterial pressure (MAP). Assessing whether this mechanism is intact or impaired and determining its boundaries is important in many clinical settings, where primary or secondary injuries to the brain may occur. Herein we describe the development of a new ultrasound tagged near infra red light monitor which tracks CBF trends, in parallel, it continuously measures blood pressure and correlates them to produce a real time autoregulation index. Its performance is validated in both in-vitro experiment and a pre-clinical case study. Results suggest that using such a tool, autoregulation boundaries as well as its impairment or functioning can be identified and assessed. It may therefore assist in individualized MAP management to ensure adequate organ perfusion and reduce the risk of postoperative complications, and might play an important role in patient care.

]]>
<![CDATA[Transcranial Doppler-Based Surrogates for Cerebral Blood Flow: A Statistical Study]]> https://www.researchpad.co/article/5989daa7ab0ee8fa60ba7ef9

It is commonly assumed that perfusion in a given cerebral territory can be inferred from Blood Flow Velocity (BFV) measurements in the corresponding stem artery. In order to test this hypothesis, we construct a cerebral blood flow (CBF) estimator based on transcranial Doppler (TCD) blood flow velocity and ten other easily available patient characteristics and clinical parameters. A total of 261 measurements were collected from 88 older patients. The estimator is based on local regression (Random Forest). Its performance is analyzed against baseline CBF from 3-D pseudocontinuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI). Patient specific CBF predictions are of poor quality (r = 0.41 and p-value = 4.5 × 10−12); the hypothesis is thus not clearly supported by evidence.

]]>
<![CDATA[A Comparative Study of Variables Influencing Ischemic Injury in the Longa and Koizumi Methods of Intraluminal Filament Middle Cerebral Artery Occlusion in Mice]]> https://www.researchpad.co/article/5989daefab0ee8fa60bc0a94

The intraluminal filament model of middle cerebral artery occlusion (MCAO) in mice and rats has been plagued by inconsistency, owing in part to the multitude of variables requiring control. In this study we investigated the impact of several major variables on survival rate, lesion volume, neurological scores, cerebral blood flow (CBF) and body weight including filament width, time after reperfusion, occlusion time and the choice of surgical method. Using the Koizumi method, we found ischemic injury can be detected as early as 30 min after reperfusion, to a degree that is not statistically different from 24 h post-perfusion, using 2,3,5-Triphenyltetrazolium chloride (TTC) staining. We also found a distinct increase in total lesion volume with increasing occlusion time, with 30–45 min a critical time for the development of large, reproducible lesions. Furthermore, although we found no significant difference in total lesion volume generated by the Koizumi and Longa methods of MCAO, nor were survival rates appreciably different between the two at 4 h after reperfusion, the Longa method produces significantly greater reperfusion. Finally, we found no statistical evidence to support the exclusion of data from animals experiencing a CBF reduction of <70% in the MCA territory following MCAO, using laser-Doppler flowmetry. Instead we suggest the main usefulness of laser-Doppler flowmetry is for guiding filament placement and the identification of subarachnoid haemorrhages and premature reperfusion. In summary, this study provides detailed evaluation of the Koizumi method of intraluminal filament MCAO in mice and a direct comparison to the Longa method.

]]>
<![CDATA[The impact of inspired oxygen levels on calibrated fMRI measurements of M, OEF and resting CMRO2 using combined hypercapnia and hyperoxia]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc237

Recent calibrated fMRI techniques using combined hypercapnia and hyperoxia allow the mapping of resting cerebral metabolic rate of oxygen (CMRO2) in absolute units, oxygen extraction fraction (OEF) and calibration parameter M (maximum BOLD). The adoption of such technique necessitates knowledge about the precision and accuracy of the model-derived parameters. One of the factors that may impact the precision and accuracy is the level of oxygen provided during periods of hyperoxia (HO). A high level of oxygen may bring the BOLD responses closer to the maximum M value, and hence reduce the error associated with the M interpolation. However, an increased concentration of paramagnetic oxygen in the inhaled air may result in a larger susceptibility area around the frontal sinuses and nasal cavity. Additionally, a higher O2 level may generate a larger arterial blood T1 shortening, which require a bigger cerebral blood flow (CBF) T1 correction. To evaluate the impact of inspired oxygen levels on M, OEF and CMRO2 estimates, a cohort of six healthy adults underwent two different protocols: one where 60% of O2 was administered during HO (low HO or LHO) and one where 100% O2 was administered (high HO or HHO). The QUantitative O2 (QUO2) MRI approach was employed, where CBF and R2* are simultaneously acquired during periods of hypercapnia (HC) and hyperoxia, using a clinical 3 T scanner. Scan sessions were repeated to assess repeatability of results at the different O2 levels. Our T1 values during periods of hyperoxia were estimated based on an empirical ex-vivo relationship between T1 and the arterial partial pressure of O2. As expected, our T1 estimates revealed a larger T1 shortening in arterial blood when administering 100% O2 relative to 60% O2 (T1LHO = 1.56±0.01 sec vs. T1HHO = 1.47±0.01 sec, P < 4*10−13). In regard to the susceptibility artifacts, the patterns and number of affected voxels were comparable irrespective of the O2 concentration. Finally, the model-derived estimates were consistent regardless of the HO levels, indicating that the different effects are adequately accounted for within the model.

]]>
<![CDATA[Sub-Clinical Cognitive Decline and Resting Cerebral Blood Flow in Middle Aged Men]]> https://www.researchpad.co/article/5989daeeab0ee8fa60bc038f

Background

Although dementia is associated with both global and regional cerebral blood flow (CBF) changes, little is known about cerebral perfusion in the early pre-clinical stages of cognitive decline preceding overt cognitive dysfunction. The aim of this study was to investigate the association of early sub-clinical cognitive decline with CBF.

Materials and Methods

The study participants were recruited from a cohort of Danish men born in 1953. Based on a regression model we selected men who performed better (Group A, n = 94) and poorer (Group B, n = 95) on cognitive testing at age 57 than expected from testing at age 20. Participants underwent supplementary cognitive testing, blood sampling and MRI including measurements of regional and global CBF.

Results

Regional CBF was lower in group B than in group A in the posterior cingulate gyrus and the precuneus. The associations were attenuated when corrected for global atrophy, but remained significant in regions of interest based analysis adjusting for regional gray matter volume and vascular risk factors. No influence of group on global CBF was observed.

Conclusions

We conclude that early sub-clinical cognitive decline is associated with reduced perfusion in the precuneus and posterior cingulate gyrus independently of regional atrophy and vascular risk factors, but cannot be statistically separated from an association with global atrophy.

]]>
<![CDATA[Perfusion Deficits and Functional Connectivity Alterations in Memory-Related Regions of Patients with Post-Traumatic Stress Disorder]]> https://www.researchpad.co/article/5989da92ab0ee8fa60ba07f7

To explore the potential alterations in cerebral blood flow (CBF) and functional connectivity of recent onset post-traumatic stress disorder (PTSD) induced by a single prolonged trauma exposure, we recruited 20 survivors experiencing the same coal mining flood disaster as the PTSD (n = 10) and non-PTSD (n = 10) group, respectively. The pulsed arterial spin labeling (ASL) images were acquired with a 3.0T MRI scanner and the partial volume (PV) effect in the images was corrected for better CBF estimation. Alterations in CBF were analyzed using both uncorrected and PV-corrected CBF maps. By using altered CBF regions as regions-of-interest, seed-based functional connectivity analysis was then performed. While only one CBF deficit in right corpus callosum of PTSD patients was detected using uncorrected CBF, three more regions (bilateral frontal lobes and right superior frontal gyrus) were identified using PV-corrected CBF. Furthermore, the regional CBF of right superior frontal gyrus exhibited significantly negative correlation with the symptom severity (r = −0.759, p = 0.018). The resting-state functional connectivity analysis revealed increased connectivity between left frontal lobe and right parietal lobe. The results indicated the symptom-specific perfusion deficits and an aberrant connectivity in memory-related regions of PTSD patients when using PV-corrected ASL data. It also suggested that PV-corrected CBF exhibits more subtle changes that may be beneficial to perfusion and connectivity analysis.

]]>
<![CDATA[Regional Reproducibility of BOLD Calibration Parameter M, OEF and Resting-State CMRO2 Measurements with QUO2 MRI]]> https://www.researchpad.co/article/5989da98ab0ee8fa60ba2b4c

The current generation of calibrated MRI methods goes beyond simple localization of task-related responses to allow the mapping of resting-state cerebral metabolic rate of oxygen (CMRO2) in micromolar units and estimation of oxygen extraction fraction (OEF). Prior to the adoption of such techniques in neuroscience research applications, knowledge about the precision and accuracy of absolute estimates of CMRO2 and OEF is crucial and remains unexplored to this day. In this study, we addressed the question of methodological precision by assessing the regional inter-subject variance and intra-subject reproducibility of the BOLD calibration parameter M, OEF, O2 delivery and absolute CMRO2 estimates derived from a state-of-the-art calibrated BOLD technique, the QUantitative O2 (QUO2) approach. We acquired simultaneous measurements of CBF and R2* at rest and during periods of hypercapnia (HC) and hyperoxia (HO) on two separate scan sessions within 24 hours using a clinical 3 T MRI scanner. Maps of M, OEF, oxygen delivery and CMRO2, were estimated from the measured end-tidal O2, CBF0, CBFHC/HO and R2*HC/HO. Variability was assessed by computing the between-subject coefficients of variation (bwCV) and within-subject CV (wsCV) in seven ROIs. All tests GM-averaged values of CBF0, M, OEF, O2 delivery and CMRO2 were: 49.5 ± 6.4 mL/100 g/min, 4.69 ± 0.91%, 0.37 ± 0.06, 377 ± 51 μmol/100 g/min and 143 ± 34 μmol/100 g/min respectively. The variability of parameter estimates was found to be the lowest when averaged throughout all GM, with general trends toward higher CVs when averaged over smaller regions. Among the MRI measurements, the most reproducible across scans was R2*0 (wsCVGM = 0.33%) along with CBF0 (wsCVGM = 3.88%) and R2*HC (wsCVGM = 6.7%). CBFHC and R2*HO were found to have a higher intra-subject variability (wsCVGM = 22.4% and wsCVGM = 16% respectively), which is likely due to propagation of random measurement errors, especially for CBFHC due to the low contrast-to-noise ratio intrinsic to ASL. Reproducibility of the QUO2 derived estimates were computed, yielding a GM intra-subject reproducibility of 3.87% for O2 delivery, 16.8% for the M value, 13.6% for OEF and 15.2% for CMRO2. Although these results focus on the precision of the QUO2 method, rather than the accuracy, the information will be useful for calculation of statistical power in future validation studies and ultimately for research applications of the method. The higher test-retest variability for the more extensively modeled parameters (M, OEF, and CMRO2) highlights the need for further improvement of acquisition methods to reduce noise levels.

]]>