ResearchPad - checklist https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Composition and Natural History of Snakes from Etá Farm region, Sete Barras, south-eastern Brazil]]> https://www.researchpad.co/article/elastic_article_8995 Approximately 140 snake species are known to occur in the Atlantic Forest with nearly half being endemic to this ecoregion. However, the Atlantic forest is one of the most threatened tropical ecoregions, with only 16% of its original area remaining as forest. This extensive habitat loss must have had a negative effect on its snake fauna. Indeed, 53% of the threatened snakes of Brazil occur in the Atlantic forest. Therefore, basic natural history information that can potentially contribute to the conservation of Atlantic forest snakes are urgently needed. Here the natural history of a snake assemblage at Etá Farm region, Sete Barras municipality, south-eastern Brazil is described, and a visual guide and an identification key provided that can be used by researchers and local people to identify snakes from this region. Most of the species found in the field use both open areas and forests, are primarily terrestrial, present diurnal activity, and include frogs in their diet. A higher number of enlarged follicles, eggs, and/or embryos were recorded during the warm and rainy season. Seventeen different types of defensive tactics were recorded in the species found in the field. This study provides useful information for understanding the structure of snake assemblages of the Atlantic Forest and is potentially useful for conservation assessments and for designing conservation plans.

]]>
<![CDATA[Commented checklist of European Gelechiidae (Lepidoptera)]]> https://www.researchpad.co/article/Nbd2d13af-80e7-4910-b7bc-bf1275b42954

Abstract

The checklist of European Gelechiidae covers 865 species, belonging to 109 genera, with three species records which require confirmation. Further, it is the first checklist to include a complete coverage of proved synonyms of species and at generic level. The following taxonomic changes are introduced: Pseudosophronia constanti (Nel, 1998) syn. nov. of Pseudosophronia exustellus (Zeller, 1847), Metzneria expositoi Vives, 2001 syn. nov. of Metzneria aestivella (Zeller, 1839); Sophronia ascalis Gozmány, 1951 syn. nov. of Sophronia grandii Hering, 1933, Aproaerema incognitana (Gozmány, 1957) comb. nov., Aproaerema cinctelloides (Nel & Varenne, 2012) comb. nov., Aproaerema azosterella (Herrich-Schäffer, 1854) comb. nov., Aproaerema montanata (Gozmány, 1957) comb. nov., Aproaerema cincticulella (Bruand, 1851) comb. nov., Aproaerema buvati (Nel, 1995) comb. nov., Aproaerema linella (Chrétien, 1904) comb. nov., Aproaerema captivella (Herrich-Schäffer, 1854) comb. nov., Aproaerema semicostella (Staudinger, 1871) comb. nov., Aproaerema steppicola (Junnilainen, 2010) comb. nov., Aproaerema cottienella (Nel, 2012) comb. nov., Ptocheuusa cinerella (Chrétien, 1908) comb. nov., Pragmatodes melagonella (Constant, 1895) comb. nov., Pragmatodes albagonella (Varenne & Nel, 2010) comb. nov., Pragmatodes parvulata (Gozmány, 1953) comb. nov., Oxypteryx nigromaculella (Millière, 1872) comb. nov., Oxypteryx wilkella (Linnaeus, 1758) comb. nov., Oxypteryx ochricapilla (Rebel, 1903) comb. nov., Oxypteryx superbella (Zeller, 1839) comb. nov., Oxypteryx mirusella (Huemer & Karsholt, 2013) comb. nov., Oxypteryx baldizzonei (Karsholt & Huemer, 2013) comb. nov., Oxypteryx occidentella (Huemer & Karsholt, 2011) comb. nov., Oxypteryx libertinella (Zeller, 1872) comb. nov., Oxypteryx gemerensis (Elsner, 2013) comb. nov., Oxypteryx deserta (Piskunov, 1990) comb. nov., Oxypteryx unicolorella (Duponchel, 1843) comb. nov., Oxypteryx nigritella (Zeller, 1847) comb. nov., Oxypteryx plumbella (Heinemann, 1870) comb. nov., Oxypteryx isostacta (Meyrick, 1926) comb. nov., Oxypteryx helotella (Staudinger, 1859) comb. nov., Oxypteryx parahelotella (Nel, 1995) comb. nov., Oxypteryx graecatella (Šumpich & Skyva, 2012) comb. nov.; Aproaerema genistae (Walsingham, 1908) comb. rev., Aproaerema thaumalea (Walsingham, 1905) comb. rev.; Dichomeris neatodes Meyrick, 1923 sp. rev.; Caryocolum horoscopa (Meyrick, 1926) stat. rev.; Ivanauskiella occitanica (Nel & Varenne, 2013) sp. rev.; Apodia martinii Petry, 1911 sp. rev.; Caulastrocecis cryptoxena (Gozmány, 1952) sp. rev. Following Article 23.9.2 ICZN we propose Caryocolum blandella (Douglas, 1852) (Gelechia) nom. protectum and Caryocolum signatella (Eversmann, 1844) (Lita) nom. oblitum.

]]>
<![CDATA[The indigenous vascular flora of the forest domain of Anela (Sardinia, Italy)]]> https://www.researchpad.co/article/5c2a795cd5eed0c48422e134
Abstract

The importance of mountains for plant diversity and richness is underestimated, particularly when transition zones between different bioclimates are present along altitudinal gradients. Here we present the first floristic data for a mountain area in the island of Sardinia (Italy), which exhibits Mediterranean bioclimates at the bottom and temperate bioclimate at the top. We discovered a very high floristic richness, despite the fact that the number of endemic taxa is not high and the number of exclusive taxa is very low. Many of the detected taxa are at their range periphery and/or ecological margin. We conclude that climate transition zones in Mediterranean mountains and especially on islands are key areas regarding plant biodiversity and should be better investigated and protected.

]]>
<![CDATA[The fishes of Cayo Arcas (Campeche Bank, Gulf of Mexico): an updated checklist]]> https://www.researchpad.co/article/5bd406abd5eed0c48477c9c7
Abstract

Cayo Arcas is a small, offshore reef complex on the southwest corner of Campeche Bank, Gulf of Mexico. The only published information (from 2000) on the fishes of that reef refers to 37 species. Here additional information is added, some from unpublished observations during the 1980s, as well as author observations made during 2013 and 2016. These bring the checklist of that reef’s fishes up to 162 species. The possible effects of the limited number of fish habitats available at Cayo Arcas on the composition of its fish fauna are discussed. The Indo-Pacific damselfish Neopomacentrus cyanomos (Bleeker, 1856) was first recorded in the Atlantic in mid-2013, on shoreline reefs in the southwest corner of the Gulf of Mexico. Recently reviewed underwater photographs show that Neopomacentrus cyanomos also was present at Cayo Arcas in mid-2013, 350 km from the first-record site. Hence it evidently had a substantial population in the southwest Gulf of Mexico in 2013, and must have arrived in there long before that year.

]]>
<![CDATA[The amphibians and reptiles of Mindanao Island, southern Philippines, II: the herpetofauna of northeast Mindanao and adjacent islands]]> https://www.researchpad.co/article/5b229a01463d7e5cd8081609
Abstract

We summarize all available amphibian and reptile species distribution data from the northeast Mindanao faunal region, including small islands associated with this subcenter of endemic vertebrate biodiversity. Together with all publicly available historical information from biodiversity repositories, we present new data from several major herpetological surveys, including recently conducted inventories on four major mountains of northeast Mindanao, and adjacent islands of Camiguin Sur, Dinagat, and Siargao. We present species accounts for all taxa, comment on unresolved taxonomic problems, and provide revisions to outdated IUCN conservation status assessments in cases where our new data significantly alter earlier classification status summaries. Together, our comprehensive analysis of this fauna suggests that the greater Mindanao faunal region possesses distinct subcenters of amphibian and reptile species diversity, and that until this area is revisited and its fauna and actually studied, with on-the-ground field work including targeted surveys of species distributions coupled to the study their natural history, our understanding of the diversity and conservation status of southern Philippine herpetological fauna will remain incomplete. Nevertheless, the northeast Mindanao geographical area (Caraga Region) appears to have the highest herpetological species diversity (at least 126 species) of any comparably-sized Philippine faunal subregion.

]]>
<![CDATA[The order Zoantharia Rafinesque, 1815 (Cnidaria, Anthozoa: Hexacorallia): supraspecific classification and nomenclature]]> https://www.researchpad.co/article/5bd40698d5eed0c48477c236
Abstract

Many supraspecific zoantharian names have long and complicated histories. The present list is provided to advise researchers on the current state of supraspecific nomenclature of the zoantharians, particularly given the recent attention paid to the taxonomy, phylogeny, and biodiversity of this order. At the same time, several taxonomic issues brought to light by recent research are resolved. Details on the taxonomic and nomenclatural history of most groups are provided, along with appendices of invalid supraspecific names.

]]>
<![CDATA[The Amphibians of Mount Oku, Cameroon: an updated species inventory and conservation review]]> https://www.researchpad.co/article/5bd412d6d5eed0c4847cae21
Abstract

Amphibians are a disproportionately threatened group of vertebrates, the status of which in Sub-Saharan Africa is still uncertain, with heterogeneous fauna punctuated by mountains. Mount Oku, Cameroon is one such mountain, which holds many endemic and restricted-range species. The history of amphibian research on Mt Oku, current knowledge on biogeography and conservation biology is reviewed, including recent findings. This updated inventory adds 25 further species, with 50 species of amphibian so far recorded to the Oku Massif (c. 900 to 3,011 m). This includes 5 endemic to Mt Oku, 7 endemic to the Bamenda Highlands, 18 restricted to the highlands of Cameroon and Nigeria, and 20 with broader ranges across Africa. This includes a new mountain locality for the Critically Endangered Leptodactylodon axillaris. Among others, the first record of Phrynobatrachus schioetzi and Ptychadena taenioscelis from Cameroon are presented. The uncertainty of habitat affinities and elevational ranges are discussed. The proportion of threatened species on Mt Oku is 44.2%, but projected to increase to 47.9% due to new species descriptions and recent dramatic declines. The natural habitats of Mt Oku are irreplaceable refuges for its endemic and restricted-range amphibian populations under severe pressure elsewhere in their range. Threats to this important amphibian fauna are increasing, including agricultural encroachment, expanding aquaculture, livestock grazing, pollution, invasive species, forest loss and degradation. Past, present and desired conservation interventions to address these threats are discussed.

]]>
<![CDATA[Hydroides Gunnerus, 1768 (Annelida, Serpulidae) is feminine: a nomenclatural checklist of updated names]]> https://www.researchpad.co/article/5bd406afd5eed0c48477cb94
Abstract

As a service to taxonomists and ecologists using names in the well-known and species-rich ship-fouling serpulid genus Hydroides we present an update of all 107 non-synonymised scientific names, with additional information on Hydroides nomenclature, original names, etymologies, and type localities derived from original literature, and in accord with the [

World Register of Marine Species

](WoRMS) database. An update is needed because the gender of genus Hydroides has from 1 January 2000 reverted to the original feminine, due to a change in the wording of International Code of Zoological Nomenclature which was overlooked at that time, and is contrary to the usage in practice of Hydroides as masculine which had started about 1992, although Code-required from the 1960s. We match 31 further original names of current WoRMS subjective junior synonyms to each non-synonymised name, and also report on the world distribution of the genus as illustrated by type localities of the valid names. We include notes on seven species inquirenda. The correct rendering is given of six names that have been altered for gender agreement for the first time herein. Hydroides gottfriedi nom. n. replaces junior homonym Hydroides rostrata Pillai, 1971. Currently there are 41 non-synonymised species-group names in Hydroides which should be gender invariant, and 23 names which would only change if moved to a neuter genus; the remaining 43 names are fully gender variable. Place-names (23), and personal names (16) make up more than a third (36%) of the species names, with most of the remainder (68) being descriptive of species character states, usually of operculum morphology (54). All species, except Hydroides norvegica (63°N), have type localities in shallow-water coastal locations in temperate to tropical waters below latitude 44°, with the highest number of new species (54) from the adjoining Western Pacific and Indian Ocean areas. The other concentration of new species (31) are those first found on the Pacific and Atlantic coasts of North America and in the Caribbean.

]]>
<![CDATA[Bees of the Azores: an annotated checklist (Apidae, Hymenoptera)]]> https://www.researchpad.co/article/5bd406b2d5eed0c48477ccf8
Abstract

We report 18 species of wild bees plus the domesticated honeybee from the Azores, which adds nine species to earlier lists. One species, Hylaeus azorae, seems to be a single island endemic, and three species are possibly native (Colletes eous, Halictus villosulus, and Hylaeus pictipes). All the remaining bee species are most likely accidental introductions that arrived after human colonization of the archipelago in the 15th century. Bee diversity in the Azores is similar to bee diversity of Madeira and Cape Verde but nearly ten times lower than it is in the Canary Islands.

]]>