ResearchPad - chlorophyll https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Response of cytokinins and nitrogen metabolism in the fronds of <i>Pteris</i> sp. under arsenic stress]]> https://www.researchpad.co/article/elastic_article_14748 Given the close relationship between cytokinins (CKs), photosynthesis and nitrogen metabolism, this study assessed the effect of arsenic (As) contamination on these metabolic components in the As-hyperaccumulators Pteris cretica L. var. Albo-lineata (Pc-A) and var. Parkerii (Pc-P) as well as the As-non-hyperaccumulator Pteris straminea Mett. ex Baker (Ps). The ferns were cultivated in a pot experiment for 23 weeks in soil spiked with As at the levels 20 and 100 mg·kg-1. For the purpose of this study, the CKs were placed into five functionally different groups according to their structure and physiological roles: bioactive forms (bCKs; CK free bases); inactive or weakly active forms (dCKs; CK N-glucosides); transport forms (tCKs; CK ribosides); storage forms (sCKs; O-glucosides); and primary products of CK biosynthesis (ppbCKs; CK nucleotides). An important finding was higher CKs total content, accumulation of sCKs and reduction of dCKs in As-hyperaccumulators in contrast to non-hyperaccumulator ferns. A significant depletion of C resources was confirmed in ferns, especially Ps, which was determined by measuring the photosynthetic rate and chlorophyll fluorescence. A fluorescence decrease signified a reduction in the C/N ratio, inducing an increase of bioactive CKs forms in Pc-P and Ps. The impact of As on N utilization was significant in As-hyperaccumulators. The glutamic acid/glutamine ratio, an indicator of primary N assimilation, diminished in all ferns with increased As level in the soil. In conclusion, the results indicate a large phenotypic diversity of Pteris species to As and suggest that the CKs composition and the glutamic acid/glutamine ratio can be used as a tool to diagnose As stress in plants.

]]>
<![CDATA[Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat]]> https://www.researchpad.co/article/elastic_article_14475 Heat stress along with low water availability at reproductive stage (terminal growth phase of wheat crop) is major contributing factor towards less wheat production in tropics and sub-tropics. Flag leaf plays a pivotal role in assimilate partitioning and stress tolerance of wheat during terminal growth phase. However, limited is known about biochemical response of flag leaf to combined and individual heat and drought stress during terminal growth phase. Therefore, current study investigated combined and individual effect of terminal drought and heat stress on water relations, photosynthetic pigments, osmolytes accumulation and antioxidants defense mechanism in flag leaf of bread wheat. Experimental treatments comprised of control, terminal drought stress alone (50% field capacity during reproductive phase), terminal heat stress alone (wheat grown inside plastic tunnel during reproductive phase) and terminal drought stress + terminal heat stress. Individual and combined imposition of drought and heat stresses significantly (p≤0.05) altered water relations, osmolyte contents, soluble proteins and sugars along with activated antioxidant defensive system in terms of superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Turgor potential, POD and APX activities were lowest under individual heat stress; however, these were improved when drought stress was combined with heat stress. It is concluded that combined effect of drought and heat stress was more detrimental than individual stresses. The interactive effect of both stresses was hypo-additive in nature, but for some traits (like turgor potential and APX) effect of one stress neutralized the other. To best of our knowledge, this is the first report on physiological and biochemical response of flag leaf of wheat to combine heat and drought stress. These results will help future studies dealing with improved stress tolerance in wheat. However, detailed studies are needed to fully understand the genetic mechanisms behind these physiological and biochemical changes in flag leaf in response to combined heat and drought stress.

]]>
<![CDATA[Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of <i>Bacillus cereus</i> and comparison with exogenous humic acid application]]> https://www.researchpad.co/article/elastic_article_11229 Heat stress is one of the major abiotic stresses that impair plant growth and crop productivity. Plant growth-promoting endophytic bacteria (PGPEB) and humic acid (HA) are used as bio-stimulants and ecofriendly approaches to improve agriculture crop production and counteract the negative effects of heat stress. Current study aimed to analyze the effect of thermotolerant SA1 an isolate of Bacillus cereus and HA on tomato seedlings. The results showed that combine application of SA1+HA significantly improved the biomass and chlorophyll fluorescence of tomato plants under normal and heat stress conditions. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA) content; however, combined application of SA1+HA markedly reduced ABA and increased SA. Antioxidant enzymes activities revealed that SA1 and HA treated plants exhibited increased levels of ascorbate peroxidase (APX), superoxide dismutase (SOD), and reduced glutathione (GSH). In addition, heat stress markedly reduced the amino acid contents; however, the amino acids were increased with co-application of SA1+HA. Similarly, inductively-coupled plasma mass-spectrometry results showed that plants treated with SA1+HA exhibited significantly higher iron (Fe+), phosphorus (P), and potassium (K+) uptake during heat stress. Heat stress increased the relative expression of SlWRKY33b and autophagy-related (SlATG5) genes, whereas co-application of SA1+HA augmented the heat stress response and reduced SlWRKY33b and SlATG5 expression. The heat stress-responsive transcription factor (SlHsfA1a) and high-affinity potassium transporter (SlHKT1) were upregulated in SA1+HA-treated plants. In conclusion, current findings suggest that co-application with SA1+HA can be used for the mitigation of heat stress damage in tomato plants and can be commercialized as a biofertilizer.

]]>
<![CDATA[Solanum lycopersicum GOLDEN 2-LIKE 2 transcription factor affects fruit quality in a light- and auxin-dependent manner]]> https://www.researchpad.co/article/5c6c75a8d5eed0c4843cff97

Plastids are organelles responsible for essential aspects of plant development, including carbon fixation and synthesis of several secondary metabolites. Chloroplast differentiation and activity are highly regulated by light, and several proteins involved in these processes have been characterised. Such is the case of the GOLDEN 2-LIKE (GLK) transcription factors, which induces the expression of genes related to chloroplast differentiation and photosynthesis. The tomato (Solanum lycopersicum) genome harbours two copies of this gene, SlGLK1 and SlGLK2, each with distinct expression patterns. While the former predominates in leaves, the latter is mainly expressed in fruits, precisely at the pedicel region. During tomato domestication, the selection of fruits with uniform ripening fixed the mutation Slglk2, nowadays present in most cultivated varieties, what penalised fruit metabolic composition. In this study, we investigated how SlGLK2 is regulated by light, auxin and cytokinin and determined the effect of SlGLK2 on tocopherol (vitamin E) and sugar metabolism, which are components of the fruit nutritional and industrial quality. To achieve this, transcriptional profiling and biochemical analysis were performed throughout fruit development and ripening from SlGLK2, Slglk2, SlGLK2-overexpressing genotypes, as well as from phytochrome and hormonal deficient mutants. The results revealed that SlGLK2 expression is regulated by phytochrome-mediated light perception, yet this gene can induce chloroplast differentiation even in a phytochrome-independent manner. Moreover, auxin was found to be a negative regulator of SlGLK2 expression, while SlGLK2 enhances cytokinin responsiveness. Additionally, SlGLK2 enhanced chlorophyll content in immature green fruits, leading to an increment in tocopherol level in ripe fruits. Finally, SlGLK2 overexpression resulted in higher total soluble solid content, possibly by the regulation of sugar metabolism enzyme-encoding genes. The results obtained here shed light on the regulatory network that interconnects SlGLK2, phytohormones and light signal, promoting the plastidial activity and consequently, influencing the quality of tomato fruit.

]]>
<![CDATA[High-resolution imagery acquired from an unmanned platform to estimate biophysical and geometrical parameters of olive trees under different irrigation regimes]]> https://www.researchpad.co/article/5c50c493d5eed0c4845e895b

The experiments were conducted in a fully-productive olive orchard (cv. Frantoio) at the experimental farm of University of Pisa at Venturina (Italy) in 2015 to assess the ability of an unmanned aerial vehicle (UAV) equipped with RGB-NIR cameras to estimate leaf area index (LAI), tree height, canopy diameter and canopy volume of olive trees that were either irrigated or rainfed. Irrigated trees received water 4–5 days a week (1348 m3 ha-1), whereas the rainfed ones received a single irrigation of 19 m3 ha-1 to relieve the extreme stress. The flight altitude was 70 m above ground level (AGL), except for one flight (50 m AGL). The Normalized Difference Vegetation Index (NDVI) was calculated by means of the map algebra technique. Canopy volume, canopy height and diameter were obtained from the digital surface model (DSM) obtained through automatic aerial triangulation, bundle block adjustment and camera calibration methods. The NDVI estimated on the day of the year (DOY) 130 was linearly correlated with both LAI and leaf chlorophyll measured on the same date (R2 = 0.78 and 0.80, respectively). The correlation between the on ground measured canopy volumes and the ones by the UAV-RGB camera techniques yielded an R2 of 0.71–0.86. The monthly canopy volume increment estimated from UAV surveys between (DOY) 130 and 244 was highly correlated with the daily water stress integral of rainfed trees (R2 = 0.99). The effect of water stress on the seasonal pattern of canopy growth was detected by these techniques in correspondence of the maximum level of stress experienced by the rainfed trees. The highest level of accuracy (RMSE = 0.16 m) in canopy height estimation was obtained when the flight altitude was 50 m AGL, yielding an R2 value of 0.87 and an almost 1:1 ratio of measured versus estimated canopy height.

]]>
<![CDATA[Integrating ecosystem services considerations within a GIS-based habitat suitability index for oyster restoration]]> https://www.researchpad.co/article/5c57e667d5eed0c484ef3039

Geospatial habitat suitability index (HSI) models have emerged as powerful tools that integrate pertinent spatial information to guide habitat restoration efforts, but have rarely accounted for spatial variation in ecosystem service provision. In this study, we utilized satellite-derived chlorophyll a concentrations for Pamlico Sound, North Carolina, USA in conjunction with data on water flow velocities and dissolved oxygen concentrations to identify potential restoration locations that would maximize the oyster reef-associated ecosystem service of water filtration. We integrated these novel factors associated with oyster water filtration ecosystem services within an existing, ‘Metapopulation Persistence’ focused GIS-based, HSI model containing biophysical (e.g., salinity, oyster larval connectivity) and logistical (e.g., distance to nearest restoration material stockpile site) factors to identify suitable locations for oyster restoration that maximize long-term persistence of restored oyster populations and water filtration ecosystem service provision. Furthermore, we compared the ‘Water Filtration’ optimized HSI with the HSI optimized for ‘Metapopulation Persistence,’ as well as a hybrid model that optimized for both water filtration and metapopulation persistence. Optimal restoration locations (i.e., locations corresponding to the top 1% of suitability scores) were identified that were consistent among the three HSI scenarios (i.e., “win-win” locations), as well as optimal locations unique to a given HSI scenario (i.e., “tradeoff” locations). The modeling framework utilized in this study can provide guidance to restoration practitioners to maximize the cost-efficiency and ecosystem services value of habitat restoration efforts. Furthermore, the functional relationships between oyster water filtration and chlorophyll a concentrations, water flow velocities, and dissolved oxygen applied in this study can guide field- and lab-testing of hypotheses related to optimal conditions for oyster reef restoration to maximize water quality enhancement benefits.

]]>
<![CDATA[Unique photosynthetic electron transport tuning and excitation distribution in heterokont algae]]> https://www.researchpad.co/article/5c3fa591d5eed0c484ca5e0e

Heterokont algae are significant contributors to marine primary productivity. These algae have a photosynthetic machinery that shares many common features with that of Viridiplantae (green algae and land plants). Here we demonstrate, however, that the photosynthetic machinery of heterokont algae responds to light fundamentally differently than that of Viridiplantae. While exposure to high light leads to electron accumulation within the photosynthetic electron transport chain in Viridiplantae, this is not the case in heterokont algae. We use this insight to manipulate the photosynthetic electron transport chain and demonstrate that heterokont algae can dynamically distribute excitation energy between the two types of photosystems. We suggest that the reported electron transport and excitation distribution features are adaptations to the marine light environment.

]]>
<![CDATA[Coral-dwelling fish moderate bleaching susceptibility of coral hosts]]> https://www.researchpad.co/article/5c1d5bd2d5eed0c4846ecafb

Global environmental change has the potential to disrupt well established species interactions, with impacts on nutrient cycling and ecosystem function. On coral reefs, fish living within the branches of coral colonies can promote coral performance, and it has been hypothesized that the enhanced water flow and nutrients provided by fish to corals could ameliorate coral bleaching. The aim of this study was to evaluate the influence of small, aggregating damselfish on the health of their host corals (physiology, recovery, and survival) before, during, and after a thermal-bleaching event. When comparing coral colonies with and without fish, those with resident fish exhibited higher Symbiodinium densities and chlorophyll in both field and experimentally-induced bleaching conditions, and higher protein concentrations in field colonies. Additionally, colonies with damselfish in aquaria exhibited both higher photosynthetic efficiency (FV/FM) during bleaching stress and post-bleaching recovery, compared to uninhabited colonies. These results demonstrate that symbiotic damselfishes, and the services they provide, translate into measureable impacts on coral tissue, and can influence coral bleaching susceptibility/resilience and recovery. By mediating how external abiotic stressors influence coral colony health, damselfish can affect the functional responses of these interspecific interactions in a warming ocean.

]]>
<![CDATA[Modeling the spatial and seasonal distribution of offshore recreational vessels in the southeast United States]]> https://www.researchpad.co/article/5c0841e3d5eed0c484fcb11d

Understanding the distribution and intensity of recreational boating activities is key for managing safety as well as environmental and social impacts. Recreational boating is a very important component of the diverse maritime traffic in the southeastern United States. The seasonal distribution of offshore recreational vessels in waters off the coast of Northeast Florida and Southeast Georgia was modeled using several techniques (Poisson, negative binomial, hurdle and zero inflated modes, generalized additive models, and generalized mixed models) and by combining map-based information provided by recreational boaters with environmental and geographical variables to find the most parsimonious model. Based on model performance, the final model analysis was conducted using a GAM approach with a negative binomial distribution. The best seasonal models explained between 86.1%– 88.6% of the total deviance. For most seasons, a model that included latitude, longitude, interaction between latitude and longitude, chlorophyll a concentration, and abundance of artificial reefs resulted in the best fit. The only exception was the model for the summer season, which did not include chlorophyll a concentration. Given the complexity of the study area, with a number of maritime activities and several marine species co-occurring, these models could provide information to analyze the distribution and overlap of recreational boating trips with other maritime activities (e.g., cargo ships, commercial vessels) and species (e.g., right whales, sea turtles, sharks). These analyses could be used to decrease harmful interactions among these groups and activities.

]]>
<![CDATA[Effect of elevated CO2 and spectral quality on whole plant gas exchange patterns in tomatoes]]> https://www.researchpad.co/article/5bd2325040307c60de5e9972

In controlled environment plant production facilities, elevating either light or CO2 levels generally has led to increased biomass and yield due to enhanced canopy photosynthesis. Today, advancements in light-emitting diodes (LEDs) have made this technology a viable option for both supplementary lighting in greenhouses and a sole lighting source in controlled environment chambers. Our study used tomato plants grown under both ambient CO2 (AC) and elevated CO2 (EC) conditions then exposed them to various CO2 and lighting treatments during both whole plant and leaf level measurements. Plants grown under EC reached the first flower developmental stage 8 days sooner and were approximately 15cm taller than those grown under AC. However, under AC plants had more leaf area while their dry weights were similar. Of note, under EC chlorophyll a and b were lower, as were carotenoids per unit leaf area. Whole plant analyses, under all CO2 challenges, showed that plants exposed to high-pressure sodium (HPS), red-blue LED, and red-white LED had similar photosynthesis, respiration, and daily carbon gain. Under different light qualities, day-time transpiration rates were similar among CO2 conditions. Day-time water-use efficiency (WUE) was higher in plants grown and exposed to EC. Similarly, WUE of plants grown under AC but exposed to short-term elevated CO2 conditions was higher than those grown and tested under AC during all light treatments. Under all CO2 conditions, plants exposed to red-white and red-blue LEDs had lower WUE than those exposed to HPS lighting. Assessing alterations due to CO2 and light quality on a whole plant basis, not merely on an individual leaf basis, furthers our understanding of the interactions between these two parameters during controlled environment production. Principle component analyses of both whole plant and leaf data indicates that increasing CO2 supply has a more dramatic effect on photosynthesis and WUE than on transpiration.

]]>
<![CDATA[Simultaneous quantum yield measurements of carbon uptake and oxygen evolution in microalgal cultures]]> https://www.researchpad.co/article/5b49a28a463d7e0f6c98de32

The photosynthetic quantum yield (Φ), defined as carbon fixed or oxygen evolved per unit of light absorbed, is a fundamental but rarely determined biophysical parameter. A method to estimate Φ for both net carbon uptake and net oxygen evolution simultaneously can provide important insights into energy and mass fluxes. Here we present details for a novel system that allows quantification of carbon fluxes using pH oscillation and simultaneous oxygen fluxes by integration with a membrane inlet mass spectrometer. The pHOS system was validated using Phaeodactylum tricornutum cultured with continuous illumination of 110 μmole quanta m-2 s-1 at 25°C. Furthermore, simultaneous measurements of carbon and oxygen flux using the pHOS-MIMS and photon flux based on spectral absorption were carried out to explore the kinetics of Φ in P. tricornutum during its acclimation from low to high light (110 to 750 μmole quanta m-2 s-1). Comparing results at 0 and 24 hours, we observed strong decreases in cellular chlorophyll a (0.58 to 0.21 pg cell-1), Fv/Fm (0.71 to 0.59) and maximum ΦCO2 (0.019 to 0.004) and ΦO2 (0.028 to 0.007), confirming the transition toward high light acclimation. The Φ time-series indicated a non-synchronized acclimation response between carbon uptake and oxygen evolution, which has been previously inferred based on transcriptomic changes for a similar experimental design with the same diatom that lacked physiological data. The integrated pHOS-MIMS system can provide simultaneous carbon and oxygen measurements accurately, and at the time-resolution required to resolve high-resolution carbon and oxygen physiological dynamics.

]]>
<![CDATA[Diversity and Composition of the Leaf Mycobiome of Beech (Fagus sylvatica) Are Affected by Local Habitat Conditions and Leaf Biochemistry]]> https://www.researchpad.co/article/5989da5dab0ee8fa60b9037d

Comparative investigations of plant-associated fungal communities (mycobiomes) in distinct habitats and under distinct climate regimes have been rarely conducted in the past. Nowadays, high-throughput sequencing allows routine examination of mycobiome responses to environmental changes and results at an unprecedented level of detail. In the present study, we analysed Illumina-generated fungal ITS1 sequences from European beech (Fagus sylvatica) originating from natural habitats at two different altitudes in the German Alps and from a managed tree nursery in northern Germany. In general, leaf-inhabiting mycobiome diversity and composition correlated significantly with the origin of the trees. Under natural condition the mycobiome was more diverse at lower than at higher elevation, whereas fungal diversity was lowest in the artificial habitat of the tree nursery. We further identified significant correlation of leaf chlorophylls and flavonoids with both habitat parameters and mycobiome biodiversity. The present results clearly point towards a pronounced importance of local stand conditions for the structure of beech leaf mycobiomes and for a close interrelation of phyllosphere fungi and leaf physiology.

]]>
<![CDATA[Phytoplankton Distribution in Relation to Environmental Drivers on the North West European Shelf Sea]]> https://www.researchpad.co/article/5989da36ab0ee8fa60b863ff

The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to shelf break and oceanic stations in the study area.

]]>
<![CDATA[Enhanced Nitrogen Loss by Eddy-Induced Vertical Transport in the Offshore Peruvian Oxygen Minimum Zone]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc8c7

The eastern tropical South Pacific (ETSP) upwelling region is one of the ocean’s largest sinks of fixed nitrogen, which is lost as N2 via the anaerobic processes of anammox and denitrification. One-third of nitrogen loss occurs in productive shelf waters stimulated by organic matter export as a result of eastern boundary upwelling. Offshore, nitrogen loss rates are lower, but due to its sheer size this area accounts for ~70% of ETSP nitrogen loss. How nitrogen loss and primary production are regulated in the offshore ETSP region where coastal upwelling is less influential remains unclear. Mesoscale eddies, ubiquitous in the ETSP region, have been suggested to enhance vertical nutrient transport and thereby regulate primary productivity and hence organic matter export. Here, we investigated the impact of mesoscale eddies on anammox and denitrification activity using 15N-labelled in situ incubation experiments. Anammox was shown to be the dominant nitrogen loss process, but varied across the eddy, whereas denitrification was below detection at all stations. Anammox rates at the eddy periphery were greater than at the center. Similarly, depth-integrated chlorophyll paralleled anammox activity, increasing at the periphery relative to the eddy center; suggestive of enhanced organic matter export along the periphery supporting nitrogen loss. This can be attributed to enhanced vertical nutrient transport caused by an eddy-driven submesoscale mechanism operating at the eddy periphery. In the ETSP region, the widespread distribution of eddies and the large heterogeneity observed in anammox rates from a compilation of stations suggests that eddy-driven vertical nutrient transport may regulate offshore primary production and thereby nitrogen loss.

]]>
<![CDATA[Polyglycine Acts as a Rejection Signal for Protein Transport at the Chloroplast Envelope]]> https://www.researchpad.co/article/5989daf1ab0ee8fa60bc13bd

PolyGly is present in many proteins in various organisms. One example is found in a transmembrane β-barrel protein, translocon at the outer-envelope-membrane of chloroplasts 75 (Toc75). Toc75 requires its N-terminal extension (t75) for proper localization. t75 comprises signals for chloroplast import (n75) and envelope sorting (c75) in tandem. n75 and c75 are removed by stromal processing peptidase and plastidic type I signal peptidase 1, respectively. PolyGly is present within c75 and its deletion or substitution causes mistargeting of Toc75 to the stroma. Here we have examined the properties of polyGly-dependent protein targeting using two soluble passenger proteins, the mature portion of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (mSS) and enhanced green fluorescent protein (EGFP). Both t75-mSS and t75-EGFP were imported into isolated chloroplasts and their n75 removed. Resultant c75-mSS was associated with the envelope at the intermembrane space, whereas c75-EGFP was partially exposed outside the envelope. Deletion of polyGly or substitution of tri-Ala for the critical tri-Gly segment within polyGly caused each passenger to be targeted to the stroma. Transient expression of t75-EGFP in Nicotiana benthamiana resulted in accumulation of c75-EGFP exposed at the surface of the chloroplast, but the majority of the EGFP passenger was found free in the cytosol with most of its c75 attachment removed. Results of circular dichroism analyses suggest that polyGly within c75 may form an extended conformation, which is disrupted by tri-Ala substitution. These data suggest that polyGly is distinct from a canonical stop-transfer sequence and acts as a rejection signal at the chloroplast inner envelope.

]]>
<![CDATA[Unusual behaviour of phototrophic picoplankton in turbid waters]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdc9d6

Autotrophic picoplankton (APP) abundance and contribution to phytoplankton biomass was studied in Hungarian shallow lakes to test the effect of inorganic turbidity determining the size distribution of the phytoplankton. The studied lakes displayed wide turbidity (TSS: 4–2250 mg l-1) and phytoplankton biomass (chlorophyll a: 1–460 μg l-1) range, as well as APP abundance (0 and 100 million cells ml-1) and contribution (0–100%) to total phytoplankton biomass. Inorganic turbidity had a significant effect on the abundance and contribution of APP, resulting in higher values compared to other freshwater lakes with the same phytoplankton biomass. Our analysis has provided empirical evidence for a switching point (50 mg l-1 inorganic turbidity), above which turbidity is the key factor causing APP predominance regardless of phytoplankton biomass in shallow turbid lakes. Our results have shown that turbid shallow lakes are unique waters, where the formerly and widely accepted model (decreasing APP contribution with increasing phytoplankton biomass) is not applicable. We hypothesize that this unusual behaviour of APP in turbid waters is a result of either diminished underwater light intensity or a reduced grazing pressure due to high inorganic turbidity.

]]>
<![CDATA[Involvement of Abscisic Acid in PSII Photodamage and D1 Protein Turnover for Light-Induced Premature Senescence of Rice Flag Leaves]]> https://www.researchpad.co/article/5989dacfab0ee8fa60bb5bd9

D1 protein in the PSII reaction center is the major target of photodamage, and it exhibits the highest turnover rate among all the thylakoid proteins. In this paper, rice psf (premature senescence of flag leaves) mutant and its wild type were used to investigate the genotype-dependent alteration in PSII photo-damage and D1 protein turnover during leaf senescence and its relation to ABA accumulation in senescent leaves. The symptom and extent of leaf senescence of the psf mutant appeared to be sunlight-dependent under natural field condition. The psf also displayed significantly higher levels of ABA accumulation in senescent leaves than the wild type. However, the premature senescence lesion of psf leaves could be alleviated by shaded treatment, concomitantly with the strikingly suppressed ABA level in the shaded areas of flag leaves. The change in ABA concentration contributed to the regulation of shade-delayed leaf senescence. The participation of ABA in the timing of senescence initiation and in the subsequent rate of leaf senescence was closely associated with PSII photodamage and D1 protein turnover during leaf senescence, in which the transcriptional expression of several key genes (psbA, psbB, psbC and OsFtsH2) involved in D1 protein biosynthesis and PSII repair cycle was seriously suppressed by the significantly increased ABA level. This response resulted in the low rate of D1 protein synthesis and impaired repair recovery in the presence of ABA. The psf showed evidently decreased D1 protein amount in the senescent leaves. Both the inhibition of de novo synthesized D1 protein and the slow rate of proteolytic removal for the photodamaged D1 protein was among the most crucial steps for the linkage between light-dependent leaf senescence and the varying ABA concentration in psf mutant leaves. OsFtsH2 transcriptional expression possibly played an important role in the regulation of D1 protein turnover and PSII repair cycle in relation to ABA mediated leaf senescence.

]]>
<![CDATA[Decreased Expression of a Gene Caused by a T-DNA Insertion in an Adjacent Gene in Arabidopsis]]> https://www.researchpad.co/article/5989dac0ab0ee8fa60bb07c9

ALADIN is a component of the nuclear pore complex in higher eukaryotes. An Arabidopsis knockout line that had a T-DNA insertion in the ALADIN gene was defective in plant growth and thylakoid development and had reduced photosynthetic activity resulting from lower chlorophyll accumulation. The mutation appeared to decrease the level of chloroplast RuBisCO subunits and PSBA and PGL35 proteins. Unexpectedly, the T-DNA insertion in the ALADIN gene decreased the expression of the neighboring gene PSRP5, which functions in translation in chloroplasts. The mutant phenotype was rescued by expressing PSRP5, but not by expressing ALADIN. The abnormal phenotypes were also detected in an artificial microRNA (amiRNA)-mediated PSRPS5 knockdown, but not in an amiRNA-mediated ALADIN knockdown line. Thus, users of T-DNA insertions should be aware that a T-DNA insertion in one gene can have effects on the expression of neighboring genes.

]]>
<![CDATA[Effects of Long-Term Periodic Submergence on Photosynthesis and Growth of Taxodium distichum and Taxodium ascendens Saplings in the Hydro-Fluctuation Zone of the Three Gorges Reservoir of China]]> https://www.researchpad.co/article/5989dafaab0ee8fa60bc451c

Responses of bald cypress (Taxodium distichum) and pond cypress (Taxodium ascendens) saplings in photosynthesis and growth to long-term periodic submergence in situ in the hydro-fluctuation zone of the Three Gorges Dam Reservoir (TGDR) were studied. Water treatments of periodic deep submergence (DS) and moderate submergence (MS) in situ were imposed on 2-year-old bald cypress and pond cypress saplings. The effects of periodic submergence on photosynthesis and growth were investigated after 3 years (i.e. 3 cycles) compared to a control (i.e. shallow submergence, abbreviated as SS). Results showed that pond cypress had no significant change in net photosynthetic rate (Pn) in response to periodic moderate and deep submergence in contrast to a significant decrease in Pn of bald cypress under both submergence treatments, when compared to that of SS. Ratios of Chlorophyll a/b and Chlorophylls/Carotenoid of pond cypress were significantly increased in periodic moderate submergence and deep submergence, while bald cypress showed no significant change. Diameter at breast height (DBH) and tree height of both species were significantly reduced along with submergence depth. Relative diameter and height growth rates of the two species were also reduced under deeper submergence. Moreover, bald cypress displayed higher relative diameter growth rate than pond cypress under deep submergence mainly attributed to higher productivity of the larger crown area of bald cypress. When subjected to deep subergence, both species showed significant reduction in primary branch number, while in moderate submergence, bald cypress but not pond cypress showed significant reduction in primary branch number. These results indicate that both bald cypress and pond cypress are suitbale candidates for reforestation in the TGDR region thanks to their submergence tolerance characteristics, but bald cypress can grow better than pond cypress under deep submergence overall.

]]>
<![CDATA[High-Frequency Patterns in the Abundance of Benthic Species near a Cold-Seep – An Internet Operated Vehicle Application]]> https://www.researchpad.co/article/5989da64ab0ee8fa60b9193f

Three benthic megafaunal species (i.e. sablefish Anoplopoma fimbria; pacific hagfish Eptatretus stoutii and a group of juvenile crabs) were tested for diel behavioral patterns at the methane hydrates site of Barkley Canyon (890 m depth), off Vancouver Island (BC, Canada). Fluctuations of animal counts in linear video-transects conducted with the Internet Operated Deep-Sea Crawler “Wally” in June, July and December of 2013, were used as proxy of population activity rhythms. Count time series and environmental parameters were analyzed under the hypothesis that the environmental conditioning of activity rhythms depends on the life habits of particular species (i.e. movement type and trophic level). Non-linear least squares modeling of biological time series revealed significant diel periods for sablefish in summer and for hagfish and crabs in December. Combined cross-correlation and redundancy (RDA) analyses showed strong relationships among environmental fluctuations and detected megafauna. In particular, sablefish presence during summer months was related to flow magnitude, while the activity of pacific hagfish and juvenile crabs in December correlated with change in chemical parameters (i.e. chlorophyll and oxygen concentrations, respectively). Waveform analyses of animal counts and environmental variables confirmed the phase delay during the 24 h cycle. The timing of detection of sablefish occurred under low flow velocities, a possible behavioral adaptation to the general hypoxic conditions. The proposed effect of chlorophyll concentrations on hagfish counts highlights the potential role of phytodetritus as an alternative food source for this opportunistic feeder. The juvenile crabs seemed to display a cryptic behavior, possibly to avoid predation, though this was suppressed when oxygen levels were at a minimum. Our results highlight the potential advantages such mobile observation platforms offer in multiparametric deep-sea monitoring in terms of both spatial and temporal resolution and add to the vastly understudied field of diel rhythms of deep-sea megafauna.

]]>